The Effects of an Intensive 2-wk Resistance Training Period on Strength Performance and Nocturnal Heart Rate Variability

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Piia Kaikkonen
Search for other papers by Piia Kaikkonen in
Current site
Google Scholar
PubMed
Close
,
Esa Hynynen
Search for other papers by Esa Hynynen in
Current site
Google Scholar
PubMed
Close
,
Arto Hautala
Search for other papers by Arto Hautala in
Current site
Google Scholar
PubMed
Close
, and
Juha P. Ahtiainen
Search for other papers by Juha P. Ahtiainen in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: It is known that modifying the endurance-type training load of athletes may result in altered cardiac autonomic modulation that may be estimated with heart rate variability (HRV). However, the specific effects of intensive resistance-type training remain unclear. The main aim of this study was to find out whether an intensive 2-wk resistance training period affects the nocturnal HRV and strength performance of healthy participants. Methods: Young healthy men (N = 13, age 24 [2] y) performed 2-wk baseline training, 2-wk intensive training, and a 9-d tapering periods, with 2, 5, and 2 hypertrophic whole-body resistance exercise sessions per week, respectively. Maximal isometric and dynamic strength were tested at the end of these training periods. Nocturnal HRV was also analyzed at the end of these training periods. Results: As a main finding, the nocturnal root mean square of differences of successive R-R intervals decreased (P = .004; from 49 [18] to 43 [15] ms; 95% CI, 2.4–10.4; effect size = 0.97) during the 2-wk intensive resistance training period. In addition, maximal isometric strength improved slightly (P = .045; from 3933 [1362] to 4138 [1540] N; 95% CI, 5.4–404; effect size = 0.60). No changes were found in 1-repetition-maximum leg press or leg press repetitions at 80% 1-repetition maximum. Conclusions: The present data suggest that increased training load due to a short-term intensive resistance training period can be detected by nocturnal HRV. However, despite short-term accumulated physiological stress, a tendency of improvement in strength performance was detected.

Kaikkonen is with the Tampere Research Center of Sports Medicine, Tampere, Finland. Hynynen is with the KIHU-Research Inst for Olympic Sports, Jyväskylä, Finland. Hautala is with the Cardiovascular Research Group, Div of Cardiology, Oulu University Hospital, University of Oulu, Oulu, Finland. Ahtiainen is with the Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.

Kaikkonen (piia.kaikkonen@ukkinstituutti.fi) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Akselrod S, Gordon D, Madwed J, Snidman N, Shannon D, Cohen R. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol. 1985;249:H867H875. PubMed ID: 4051021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Martinmäki K, Rusko H, Kooistra L, Kettunen J, Saalasti S. Intraindividual validation of heart rate variability indices to measure vagal effects on hearts. Am J Physiol. 2006;290:H640H647.

    • Search Google Scholar
    • Export Citation
  • 3.

    Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Circulation. 1996;93:10431065. doi:10.1161/01.CIR.93.5.1043

    • Search Google Scholar
    • Export Citation
  • 4.

    Bellenger C, Fuller J, Thomson R, Davison K, Robertson E, Buckley J. Monitoring athletic training status through autonomic heart rate regulation: a systematic review and meta-analysis. Sports Med. 2016;46:14611486. PubMed ID: 26888648 doi:10.1007/s40279-016-0484-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Carter J, Ray C, Downs E, Cooke W. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive participants. J Appl Physiol. 2003;94:22122216. PubMed ID: 12562680 doi:10.1152/japplphysiol.01109.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Pichot V, Roche F, Gaspoz J, et al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc. 2000;32:17291736. PubMed ID: 11039645 doi:10.1097/00005768-200010000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pichot V, Busso T, Roche F, et al. Autonomic adaptations to intensive and overload training periods: a laboratory study. Med Sci Sports Exerc. 2002;34:16601666. PubMed ID: 12370569 doi:10.1097/00005768-200210000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Uusitalo AL, Tahvanainen K, Uusitalo AJ, Rusko H. Non-invasive evaluation of sympathovagal balance in athletes by time and frequency-domain analyses of heart rate and blood pressure variability. Clin Physiol. 1996;16:575588. PubMed ID: 8937797 doi:10.1111/j.1475-097X.1996.tb00735.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Borresen J, Lambert M. The quantification of training load, the training response and the effect on performance. Sports Med. 2009;39:779795. doi:10.2165/11317780-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Porges S. Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev. 1995;19:225233. PubMed ID: 7630578 doi:10.1016/0149-7634(94)00066-A

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Goldberger J, Le F, Lahiri M, Kannankeril P, Ng J, Kadish A. Assessment of parasympathetic reactivation after exercise. Am J Physiol. 2006;290:H2446H2452.

    • Search Google Scholar
    • Export Citation
  • 12.

    Kaikkonen P, Nummela A, Rusko H. Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol. 2007;102:7986. PubMed ID: 17899162 doi:10.1007/s00421-007-0559-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Heffernan K, Kelly E, Collier S, Fernhall B. Cardiac autonomic modulation during recovery from acute endurance versus resistance exercise. Eur J Cardiovasc Prev Rehabil. 2006;13:8086. PubMed ID: 16449868 doi:10.1097/00149831-200602000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Buchheit M, Simon C, Piquard F, Ehrhart J, Brandenberger G. Effects of increased training load on vagal-related indexes of heart rate variability: a novel sleep approach. Am J Physiol. 2004;287:H2813H2818.

    • Search Google Scholar
    • Export Citation
  • 15.

    Nummela A, Hynynen E, Kaikkonen P, Rusko H. Endurance performance and nocturnal HRV indices. Int J Sports Med. 2010;31:154159. PubMed ID: 20221995 doi:10.1055/s-0029-1243221

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Vesterinen V, Häkkinen K, Hynynen E, Mikkola J, Hokka L, Nummela A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand J Med Sci Sports. 2013;23:171180. PubMed ID: 21812828 doi:10.1111/j.1600-0838.2011.01365.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Le Meur Y, Pichon A, Schaal K, et al. Evidence of parasympathetic hyperactivity in functionally overreached athletes. Med Sci Sports Exerc. 2013;45:20612071. PubMed ID: 24136138 doi:10.1249/MSS.0b013e3182980125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hynynen E, Uusitalo A, Konttinen N, Rusko H. Heart rate variability during night sleep and after awakening in overtrained athletes. Med Sci Sports Exerc. 2006;38:313317. PubMed ID: 16531900 doi:10.1249/01.mss.0000184631.27641.b5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cooke W, Carter J. Strength training does not affect vagal-cardiac control of cardiovascular baroreflex sensitivity in young healthy participants. Eur J Appl Physiol. 2005;93:719725. PubMed ID: 15517338 doi:10.1007/s00421-004-1243-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Heffernan K, Fahs C, Shinsako K, Jae S, Fernhall B. Heart rate recovery and heart rate complexity following resistance exercise training and detraining in young men. Am J Physiol. 2007;293:H3180H3186.

    • Search Google Scholar
    • Export Citation
  • 21.

    Karavirta L, Tulppo M, Laaksonen D, et al. Heart rate dynamics after combined endurance and strength training in older men. Med Sci Sports Exerc. 2009;41:14361443. PubMed ID: 19516157 doi:10.1249/MSS.0b013e3181994a91

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Madden K, Levy W, Stratton J. Exercise training and heart rate variability in older adult female participants. Clin Invest Med. 2006;29:2028. PubMed ID: 16553360

    • Search Google Scholar
    • Export Citation
  • 23.

    Hynynen E, Vesterinen V, Rusko H, Nummela A. Effects of moderate and heavy endurance exercise on nocturnal HRV. Int J Sports Med. 2010;31:428432. PubMed ID: 20419617 doi:10.1055/s-0030-1249625

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Plews D, Laursen P, Stanley J. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43:773781. PubMed ID: 23852425 doi:10.1007/s40279-013-0071-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Durnin J, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:7797. PubMed ID: 4843734 doi:10.1079/BJN19740060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Saalasti S. Neural Networks for Heart Rate Time Series Analysis. [Ph.D. dissertation]. Jyväskylä Studies in Computing 33. Jyväskylä, Finland: Department of Mathematical Information Technology, University of Jyväskylä; 2003.

    • Search Google Scholar
    • Export Citation
  • 27.

    Ng J, Sundaram S, Kadish A, Goldberger J. Autonomic effects on the spectral analysis of heart rate variability after exercise. Am J Physiol. 2009;297:H1421H1428.

    • Search Google Scholar
    • Export Citation
  • 28.

    Myllymäki T, Kyröläinen H, Savolainen K, et al. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J Sleep Res. 2011;20:146153. doi:10.1111/j.1365-2869.2010.00874.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Heffernan K, Sosnoff J, Jae S, Gates G, Fernhall B. Acute resistance exercise reduces heart rate complexity and increases QTc interval. Int J Sports Med. 2008;29:289293. PubMed ID: 17990212 doi:10.1055/s-2007-965363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Issurin V. New horizons for the methodology and physiology of training periodization. Sports Med. 2010;40:189206. PubMed ID: 20199119 doi:10.2165/11319770-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hoenig J, Heisey D. The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat. 2001;55:1924. doi:10.1198/000313001300339897

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3384 1157 21
Full Text Views 93 14 0
PDF Downloads 63 20 0