The Influence of Heat Acclimation and Hypohydration on Post-Weight-Loss Exercise Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To examine the influence of fluid intake on heat acclimation and the subsequent effects on exercise performance following acute hypohydration. Methods: Participants were randomly assigned to 1 of 2 groups, either able to consume water ad libitum (n = 10; age 23 [3] y, height 1.81 [0.09] m, body mass 87 [13] kg; HAW) or not allowed fluid (n = 10; age 26 [5] y, height 1.76 [0.05] m, body mass 79 [10] kg; HANW) throughout 12 × 1.5-h passive heat-acclimation sessions. Experimental trials were completed on 2 occasions before (2 baseline trials) and 1 following the heat-acclimation sessions. These sessions involved 3 h of passive heating (45°C, 38% relative humidity) to induce hypohydration followed by 3 h of ad libitum food and fluid intake after which participants performed a repeat sled-push test to assess physical performance. Urine and blood samples were collected before, immediately, and 3 h following hypohydration to assess hydration status. Mood was also assessed at the same time points. Results: No meaningful differences in physiological or performance variables were observed between HANW and HAW at any time point. Using pooled data, mean sprint speed was significantly (P < .001) faster following heat acclimation (4.6 [0.7] s compared with 5.1 [0.8] s). Furthermore, heat acclimation appeared to improve mood following hypohydration. Conclusions: Results suggest that passive heat-acclimation protocols may be effective at improving short-duration repeat-effort performance following acute hypohydration.

Barley, Chapman, Mavropalias, and Abbiss are with the Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia. Chapman is also with Performance Support, New South Wales Inst of Sport, Sydney Olympic Park, NSW, Australia.

Barley (o.barley@ecu.edu.au) is corresponding author.
  • 1.

    Franchini E, Brito CJ, Artioli GG. Weight loss in combat sports: physiological, psychological and performance effects. J Int Soc Sports Nutr. 2012;9(1):52. PubMed ID: 23237303 doi:10.1186/1550-2783-9-52

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barley OR, Chapman DW, Abbiss CR. Weight loss strategies in combat sports and concerning habits in mixed martial arts. Int J Sports Physiol Perform. 2018;13(7):933939. PubMed ID: 29283792 doi:10.1123/ijspp.2017-0715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Reale R, Slater G, Burke LM. Weight management practices of Australian Olympic combat sport athletes. Int J Sports Physiol Perform. 2018;13(4):459466. PubMed ID: 28872383 doi:10.1123/ijspp.2016-0553

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Reale R, Slater G, Burke L. Acute-weight-loss strategies for combat sports and applications to Olympic success. Int J Sports Physiol Perform. 2017;12(2):142151. PubMed ID: 27347784 doi:10.1123/ijspp.2016-0211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Crighton B, Close GL, Morton JP. Alarming weight cutting behaviours in mixed martial arts: a cause for concern and a call for action. Br J Sports Med. 2016;50(8):446447. PubMed ID: 26459278 doi:10.1136/bjsports-2015-094732

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Jetton AM, Lawrence MM, Meucci M, et al. Dehydration and acute weight gain in mixed martial arts fighters before competition. J Strength Cond Res. 2013;27(5):13221326. PubMed ID: 23439336 doi:10.1519/JSC.0b013e31828a1e91

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barley OR, Iredale F, Chapman DW, Hopper A, Abbiss CR. Repeat effort performance is reduced 24 hours after acute dehydration in mixed martial arts athletes. J Strength Cond Res. 2018;32(9):25552561. PubMed ID: 28930879 doi:10.1519/JSC.0000000000002249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Barley OR, Chapman DW, Blazevich AJ, Abbiss CR. Acute dehydration impairs endurance without modulating neuromuscular function. Front Physiol. 2018;9:1562. PubMed ID: 30450056 doi:10.3389/fphys.2018.01562

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    de Sousa Fortes L, de Vasconcelos GC, de Vasconcelos Costa BD, Paes PP, Franchini E. Effect of 10% weight loss on simulated taekwondo match performance: a randomized trial. J Exerc Rehabil. 2017;13(6):659665. PubMed ID: 29326898 doi:10.12965/jer.1735134.567

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fortes LS, Costa BD, Paes PP, Cyrino ES, Vianna JM, Franchini E. Effect of rapid weight loss on physical performance in judo athletes: is rapid weight loss a help for judokas with weight problems? Int J Perform Anal Sport. 2017;17(5):763773. doi:10.1080/24748668.2017.1399323

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Hall C, Lane AM. Effects of rapid weight loss on mood and performance among amateur boxers. Br J Sports Med. 2001;35(6):390395. PubMed ID: 11726472 doi:10.1136/bjsm.35.6.390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Timpmann S, Ööpik V, Pääsuke M, Medijainen L, Ereline J. Acute effects of self-selected regimen of rapid body mass loss in combat sports athletes. J Sports Sci Med. 2008;7(2):210. PubMed ID: 24149451

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Moore B, King D, Kesl L, et al. Effect of rapid dehydration and rehydration on work capacity and muscle metabolism during intense exercise in wrestlers. Med Sci Sports Exerc. 1992;24(5):S95. doi:10.1249/00005768-199205001-00569

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Périard J, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(S1):2038. doi:10.1111/sms.12408

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):11401147. PubMed ID: 20724560 doi:10.1152/japplphysiol.00495.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Taylor NA, Cotter JD. Heat adaptation: guidelines for the optimisation of human performance. Int Sport Med J. 2006;7(1):3357.

  • 17.

    Garrett AT, Rehrer NJ, Patterson MJ. Induction and decay of short-term heat acclimation in moderately and highly trained athletes. Sports Med. 2011;41(9):757771. PubMed ID: 21846164 doi:10.2165/11587320-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sawka MN, Pandolf K, Avellini B, Shapiro Y. Does heat acclimation lower the rate of metabolism elicited by muscular exercise? Aviat Space Environ Med. 1983;54(1):2731.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Febbraio MA, Snow R, Hargreaves M, Stathis C, Martin I, Carey M. Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J Appl Physiol. 1994;76(2):589597. PubMed ID: 8175568 doi:10.1152/jappl.1994.76.2.589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    King DS, Costill DL, Fink WJ, Hargreaves M, Fielding RA. Muscle metabolism during exercise in the heat in unacclimatized and acclimatized humans. J Appl Physiol. 1985;59(5):13501354. PubMed ID: 4066564 doi:10.1152/jappl.1985.59.5.1350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):18831928. PubMed ID: 23733692.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Brager GS, De Dear RJ. Thermal adaptation in the built environment: a literature review. Energy Build. 1998;27(1):8396. doi:10.1016/S0378-7788(97)00053-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Patterson MJ, Stocks JM, Taylor NA. Whole-body fluid distribution in humans during dehydration and recovery, before and after humid-heat acclimation induced using controlled hyperthermia. Acta Physiol. 2014;210(4):899912. PubMed ID: 24330400 doi:10.1111/apha.12214

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Nielsen B, Strange S, Christensen NJ, Warberg J, Saltin B. Acute and adaptive responses in humans to exercise in a warm, humid environment. Pflügers Archiv. 1997;434(1):4956. doi:10.1007/s004240050361

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61(1):243282. doi:10.1146/annurev.physiol.61.1.243

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92(5):21772186. PubMed ID: 11960972 doi:10.1152/japplphysiol.01267.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Akerman AP, Tipton M, Minson CT, Cotter JD. Heat stress and dehydration in adapting for performance: good, bad, both, or neither? Temperature . 2016;3(3):412436. doi:10.1080/23328940.2016.1216255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):11491160. PubMed ID: 19897823 doi:10.3758/BRM.41.4.1149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Curran SL, Andrykowski MA, Studts JL. Short Form of the Profile of Mood States (POMS-SF): psychometric information. Psychol Assess. 1995;7(1):80. doi:10.1037/1040-3590.7.1.80

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Makdissi M, Collie A, Maruff P, et al. Computerised cognitive assessment of concussed Australian Rules footballers. Br J Sports Med. 2001;35(5):354360. PubMed ID: 11579074 doi:10.1136/bjsm.35.5.354

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Collie A, Maruff P, Makdissi M, McCrory P, McStephen M, Darby D. CogSport: reliability and correlation with conventional cognitive tests used in postconcussion medical evaluations. Clin J Sport Med. 2003;13(1):2832. PubMed ID: 12544161 doi:10.1097/00042752-200301000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 952 952 295
Full Text Views 24 24 2
PDF Downloads 17 17 1