Tart Cherry Juice: No Effect on Muscle Function Loss or Muscle Soreness in Professional Soccer Players After a Match

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Will Abbott
Search for other papers by Will Abbott in
Current site
Google Scholar
PubMed
Close
,
Callum Brashill
Search for other papers by Callum Brashill in
Current site
Google Scholar
PubMed
Close
,
Adam Brett
Search for other papers by Adam Brett in
Current site
Google Scholar
PubMed
Close
, and
Tom Clifford
Search for other papers by Tom Clifford in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To investigate the effects of tart cherry juice (TCJ) on recovery from a soccer match in professional players. Methods: In a double-blind, placebo-controlled, crossover design, 10 male professional soccer players from the reserve team of an English Premier League Club (age 19 [1] y, height 1.8 [0.6] m, body mass 77.3 [6.4] kg) consumed 2 × 30-mL servings of TCJ or an isocaloric cherry-flavored control drink (CON) before and after a 90-minute match and 12 and 36 hours after the match. Muscle function (countermovement jump height and reactive strength index), subjective well-being, and subjective muscle soreness were measured before and 12, 36, and 60 hours after each match. Results: Countermovement jump height was similarly reduced in the days after the match after TCJ and CON supplementation, with the greatest loss occurring at 12-hour postmatch (−5.9% [3.1%] vs −5.4% [2.9%], of baseline values, respectively; P = .966; ηp2=.010). Decrements in reactive strength index were also greatest at 12-hour postmatch (TCJ −9.4% [8.4%] vs CON −13.9% [4.8%], of baseline values), but no group differences were observed at any time point (P = .097; ηp2=.205). Muscle soreness increased 12- to 60-hour postmatch in both groups, peaking at 12-hour postmatch (TCJ 122 [27] mm vs CON 119 [22] mm), but no group differences were observed (P = .808; ηp2=.024). No interaction effects were observed for subjective well-being (P = .874; ηp2=.025). Conclusions: TCJ did not hasten recovery after a soccer match in professional players. These findings bring into question the use of TCJ as a recovery aid in professional soccer players.

Abbott, Brashill, and Brett are with Brighton and Hove Albion Football Club, Lancing, United Kingdom. Clifford is with the Inst of Cellular Medicine and School of Biomedical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom.

Tom Clifford (tom.clifford@ncl.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Paulsen G, Ramer Mikkelsen U, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exercise Immunol Rev. 2012;1;18.

    • Search Google Scholar
    • Export Citation
  • 2.

    Hyldahl RD, Hubal MJ. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve. 2014;49(2):155170. PubMed ID: 24030935 doi:10.1002/mus.24077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chazaud B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol. 2016;94(2):140145. PubMed ID: 26526620 doi:10.1038/icb.2015.97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Warren GL, Call JA, Farthing AK, Baadom-Piaro B. Minimal evidence for a secondary loss of strength after an acute muscle injury: a systematic review and meta-analysis. Sports Med. 2017;47(1):4159. PubMed ID: 27100114 doi:10.1007/s40279-016-0528-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Paulsen , Crameri R, Benestad HB, et al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc. 2010;42(1):7585. PubMed ID: 20010127 doi:10.1249/MSS.0b013e3181ac7adb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pizza FX, Peterson JM, Baas JH, Koh TJ. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol. 2005;562(3):899913. doi:10.1113/jphysiol.2004.073965

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Paulsen G, Benestad HB, Strøm-Gundersen IN, Mørkrid L, Lappegård KT, Raastad T. Delayed leukocytosis and cytokine response to high-force eccentric exercise. Med Sci Sports Exerc. 2005;37(11):18771883. PubMed ID: 16286856 doi:10.1249/01.mss.0000177064.65927.98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tscholl PM, Vaso M, Weber A, Dvorak J. High prevalence of medication use in professional football tournaments including the World Cups between 2002 and 2014: a narrative review with a focus on NSAIDs. Br J Sports Med. 2015;49(9):580582. PubMed ID: 25878074 doi:10.1136/bjsports-2015-094784

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Harty PS, Cottet ML, Malloy JK, Kerksick CM. Nutritional and supplementation strategies to prevent and attenuate exercise-induced muscle damage: a brief review. Sports Med Open. 2019;5(1):1. PubMed ID: 30617517 doi:10.1186/s40798-018-0176-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Myburgh KH. Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med. 2014;44(1):5770. doi:10.1007/s40279-014-0151-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Vitale KC, Hueglin S, Broad E. Tart cherry juice in athletes: a literature review and commentary. Curr Sports Med Rep. 2017;16(4):230239. PubMed ID: 28696985 doi:10.1249/JSR.0000000000000385

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jackman SR, Brook MS, Pulsford RM, et al. Tart cherry concentrate does not enhance muscle protein synthesis response to exercise and protein in healthy older men. Exp Gerontol. 2018;110:202208. PubMed ID: 29890270 doi:10.1016/j.exger.2018.06.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bloomer RJ, Fisher-Wellman KH. Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gender Med. 2008;5(3):218228. doi:10.1016/j.genm.2008.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Abbott W, Brett A, Cockburn E, Clifford T. Presleep casein protein ingestion: acceleration of functional recovery in professional soccer players. Int J Sport Physiol Perform. 2018;14:124. doi:10.1123/ijspp.2018-0385

    • Search Google Scholar
    • Export Citation
  • 15.

    Bell PG, Walshe IH, Davison GW, Stevenson EJ, Howatson G. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Appl Physiol Nutr Metab. 2014;40(4):414423. PubMed ID: 25794236 doi:10.1139/apnm-2014-0244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bell PG, Walshe IH, Davison GW, Stevenson E, Howatson G. Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients. 2014;6(2):829843. PubMed ID: 24566440 doi:10.3390/nu6020829

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bell PG, Stevenson E, Davison GW, Howatson G. The effects of Montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients. 2016;8(7):441. doi:10.3390/nu8070441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Howatson G, McHugh MP, Hill JA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sport. 2010;20(6):843852. doi:10.1111/j.1600-0838.2009.01005.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Keane KM, Bell PG, Lodge JK, et al. Phytochemical uptake following human consumption of Montmorency tart cherry (L. Prunus cerasus) and influence of phenolic acids on vascular smooth muscle cells in vitro. Eur J Nutr. 2016;55(4):16951705. PubMed ID: 26163338 doi:10.1007/s00394-015-0988-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen J. Statistical Power Analysis For the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Erlbaum; 1988.

  • 21.

    Buchheit M. The numbers will love you back in return—I promise. Int J Sports Phys Perform. 2016;11(4):551554. doi:10.1123/ijspp.2016-0214

  • 22.

    Levers K, Dalton R, Galvan E, et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J Int Soc Sport Nutr. 2016;13(1):22. doi:10.1186/s12970-016-0133-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Levers K, Dalton R, Galvan E, et al. Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. J Int Soc Sport Nutr. 2015;12(1):41. doi:10.1186/s12970-015-0102-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Connolly DA, McHugh MP, Padilla-Zakour OI. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679683. PubMed ID: 16790484 doi:10.1136/bjsm.2005.025429

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bowtell JL, Sumners DP, Dyer A, Fox P, Mileva KN. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc. 2011;43(8):15441551. PubMed ID: 21233776 doi:10.1249/MSS.0b013e31820e5adc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    McCormick R, Peeling P, Binnie M, Dawson B, Sim M. Effect of tart cherry juice on recovery and next day performance in well-trained Water Polo players. J Int Soc Sport Nutr. 2016;13(1):41. doi:10.1186/s12970-016-0151-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999;27(1):4359. PubMed ID: 10028132 doi:10.2165/00007256-199927010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Braakhuis AJ, Hopkins WG, Lowe TE, Rush EC. Development and validation of a food-frequency questionnaire to assess short-term antioxidant intake in athletes. Int J Sport Nutr Exerc Metab. 2011;21(2):105112. PubMed ID: 21558572 doi:10.1123/ijsnem.21.2.105

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Peake JM, Markworth JF, Nosaka K, Raastad T, Wadley GD, Coffey VG. Modulating exercise-induced hormesis: does less equal more? J Appl Physiol. 2015;119(3):172189. PubMed ID: 25977451 doi:10.1152/japplphysiol.01055.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kirakosyan A, Seymour EM, Wolforth J, McNish R, Kaufman PB, Bolling SF. Tissue bioavailability of anthocyanins from whole tart cherry in healthy rats. Food Chem. 2015;171(171):2631. doi:10.1016/j.foodchem.2014.08.114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4550 1559 266
Full Text Views 106 37 1
PDF Downloads 96 52 1