Performance Effects of Carbohydrate Ingestion Between Bouts of Intense Aerobic Interval Exercise

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Background: Rest between training sessions can be short for athletes. In these situations, consuming carbohydrate (CHO) postexercise replenishes glycogen stores, which is important for recovery and subsequent performance. Purpose: This study tested whether CHO intake during a 2-hour rest between exercise bouts improved performance in the subsequent bout. Methods: In a randomized, single-blinded, crossover design, 10 recreationally active participants (23 [4] y, 70.8 [6.6] kg, 47.0 [5.4] mL·O2·min−1·kg·body·mass−1) arrived at the lab postprandial and completed 2 exercise bouts separated by a 2-hour rest. Bouts included 5 × 4-minute intervals at ∼80% peak oxygen consumption separated by 2 minutes at ∼40% peak oxygen consumption and ended with an endurance trial to voluntary exhaustion at ∼90% peak oxygen consumption. During intervals 1 and 4 in each bout, expired gases were collected and O2 deficit was estimated. Immediately following bout 1, either a CHO (1.2 g CHO·kg·body·mass−1) or placebo solution was consumed. Results: Endurance trial duration decreased in bout 2 versus 1 in both conditions (P < .01) but was ∼35% longer in bout 2 with CHO versus placebo (interaction, P = .03; post hoc, P = .03). Oxygen uptake increased during interval 4 versus 1 in both bouts (P < .01) but was unaffected by CHO (P ≥ .58). O2 deficit was unaffected by CHO (P = .93), bout, or interval (P ≥ .15). Perceived exertion was higher in bout 2 versus 1 (P < .001) and reduced in intervals 2 and 4 in CHO (P ≤ .01). Conclusions: When rest between training sessions is 2 hours, athletes may improve subsequent performance by consuming CHO during recovery.

McCarthy is with the Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada. Spriet is with the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.

McCarthy (mccartdg@mcmaster.ca) is corresponding author.
  • 1.

    Romijn JA, Coyle EF, Sidossis S, et al. Regulation in relation of endogenous fat and carbohydrate to exercise intensity and duration metabolism. Am J Physiol. 1993;265(3)(pt 1):E380E391. PubMed ID: 8214047

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Van Loon LJC, Greenhaff PL, Saris WHM, Wagenmakers AJM. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536(1):295304. doi:10.1111/j.1469-7793.2001.00295.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165172. PubMed ID: 3525502 doi:10.1152/jappl.1986.61.1.165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ørtenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;591:44054413. doi:10.1113/jphysiol.2013.251629

  • 5.

    Krustrup P, Soderlund K, Mohr M, Bangsbo J. Slow-twitch fiber glycogen depletion elevates moderate-exercise fast-twitch fiber activity and VO2 uptake. Med Sci Sports Exerc. 2004;36(6):973982. doi:10.1249/01.MSS.0000128246.20242.8B

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Barstow TJ, Jones AM, Nguyen PH, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol. 1996;81(4):16421650. PubMed ID: 8904581 doi:10.1152/jappl.1996.81.4.1642

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Burke LM, Van Loon LJC, Hawley JA. Post-exercise muscle glycogen resynthesis in humans. J Appl Physiol. 2017;122(5):10551067. PubMed ID: 27789774 doi:10.1152/japplphysiol.00860.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Alghannam AF, Gonzalez JT, Betts JA. Restoration of muscle glycogen and functional capacity: role of post-exercise carbohydrate and protein co-ingestion. Nutrients. 2018;10(253):127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gonzalez J, Betts J. Dietary sugars, exercise and hepatic carbohydrate metabolism. Proc Nutr Soc. 2019;78(2):257. PubMed ID: 30739624 doi:10.1017/S0029665119000028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Piehl Aulin K, Soderlund K, Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 2000;81:346351. PubMed ID: 10664095 doi:10.1007/s004210050053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    McCartney D, Desbrow B, Irwin C. Post-exercise ingestion of carbohydrate, protein and water: A systematic review and meta-analysis for effects on subsequent athletic performance. Sports Med. 2018;48:379408. doi:10.1007/s40279-017-0800-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. doi:10.1249/00005768-198205000-00012

  • 13.

    Betts J, Williams C, Duffy K, Gunner F. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sport Sci. 2007;25(13):14491460. doi:10.1080/02640410701213459

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Cramer MJ, Dumke CL, Hailes WS, Cuddy JS, Ruby BC. Postexercise glycogen recovery and exercise performance is not significantly different between fast food and sport supplements. Int J Sport Nutr Exerc Metab. 2015;25(5):448455. PubMed ID: 25811308 doi:10.1123/ijsnem.2014-0230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fallowfield JL, Williams C, Singh R. Carbohydrate-electrolyte beverage during 4 hours of recovery on subsequent endurance capacity. Int J Sport Nutr. 1995;5:285299. PubMed ID: 8605516 doi:10.1123/ijsn.5.4.285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alghannam AF, Jedzejewski D, Tweedle MG, et al. Impact of muscle glycogen availability on the capacity for repeated exercise in man. Med Sci Sports Exerc. 2016;48(1):123131. doi:10.1249/MSS.0000000000000737

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Maunder E, Podlogar T, Wallis GA. Postexercise fructose-maltodextrin ingestion enhances subsequent endurance capacity. Med Sci Sports Exerc. 2018;50(5):10391045. doi:10.1249/MSS.0000000000001516

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Stephens FB, Roig M, Armstrong G, Greenhaff PL. Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise. J Sports Sci. 2008;26(2):149154. PubMed ID: 17852670 doi:10.1080/02640410701361548

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Howlett RA, Parolin ML, Dyck DJ, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Physiol. 1998;275(44):R418R425.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cochran AJR, Little JP, Tarnopolsky MA, Gibala MJ. Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. J Appl Physiol. 2010;108:628636. PubMed ID: 20056852 doi:10.1152/japplphysiol.00659.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Perry CGR, Heigenhauser GJF, Bonen A, Spriet LL. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab. 2008;33(6):11121123. PubMed ID: 19088769 doi:10.1139/H08-097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Vollestad NK, Blom PC. Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand. 1985;125:395405. PubMed ID: 4083044 doi:10.1111/j.1748-1716.1985.tb07735.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Logan-Sprenger HM, Heigenhauser GJF, Jones GL, Spriet LL. The effect of dehydration on muscle metabolism and time trial performance during prolonged cycling in males. Physiol Rep. 2015;3(8):e12483. doi:10.14814/phy2.12483

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Galloway SDR, Talanian JL, Shoveller AK, Heigenhauser GJF, Spriet LL. Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. J Appl Physiol. 2008;105(2):643651. PubMed ID: 18583380 doi:10.1152/japplphysiol.90525.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lane SC, Areta JL, Bird SR, et al. Caffeine ingestion and cycling power output in a low or normal muscle glycogen state. Med Sci Sports Exerc. 2013;45(8):15771584. PubMed ID: 23439421 doi:10.1249/MSS.0b013e31828af183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    McGlory C, Morton JP. The effects of postexercise consumption of high-molecular-weight versus low-molecular-weight carbohydrate solutions on subsequent high-intensity interval-running capacity. Int J Sport Nutr Exerc Metab. 2010;20:361369. PubMed ID: 20975104 doi:10.1123/ijsnem.20.5.361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Edinburgh RM, Hengist A, Smith HA, et al. Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. Am J Physiol Endocrinol Metab. 2019;315:E1062E1074. doi:10.1152/ajpendo.00163.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of VO2 kinetics: Mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43(11):20462062. doi:10.1249/MSS.0b013e31821fcfc1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Stepto N, Martin DT, Hawley JA. Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc. 2001;33(2):303310. doi:10.1097/00005768-200102000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 602 601 14
Full Text Views 28 28 0
PDF Downloads 12 12 0