Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To evaluate the effects of a trail-running race on muscle oxidative function by measuring pulmonary gas exchange variables and muscle fractional O2 extraction. Methods: Eighteen athletes were evaluated before (PRE) and after (POST) a trail-running competition of 32 or 50 km with 2000 or 3500 m of elevation gain, respectively. During the week before the race, runners performed an incremental uphill running test and an incremental exercise by utilizing a 1-leg knee extension ergometer. The knee extension exercise was repeated after the end of the race. During the knee extension test, the authors measured oxygen uptake (V˙O2) and micromolar changes in deoxygenated hemoglobin (Hb)+myoglobin (Mb) concentrations (Δ[deoxy(Hb+Mb)]) on vastus lateralis with a portable near-infrared spectroscopy. Results: V˙O2peak was lower at POST versus PRE (−23.9% [9.0%]; P < .001). V˙O2peak at POST was lower than V˙O2 at the same workload at PRE (−8.4% [15.6%]; P < .050). Peak power output and time to exhaustion decreased at POST by −23.7% (14.3%) and −18.3% (11.3%), respectively (P < .005). At POST, the increase of Δ[deoxy(Hb+Mb)] as a function of work rate, from unloaded to peak, was less pronounced (from 20.2% [10.1%] to 64.5% [21.1%] of limb ischemia at PRE to 16.9% [12.7%] to 44.0% [18.9%] at POST). Peak Δ[deoxy(Hb+Mb)] values were lower at POST (by −31.2% [20.5%]; P < .001). Conclusions: Trail running leads to impairment in skeletal muscle oxidative metabolism, possibly related to muscle damage from repeated eccentric contractions. In association with other mechanisms, the impairment of skeletal muscle oxidative metabolism is likely responsible for the reduced exercise capacity and tolerance during and following these races.

Giovanelli, Biasutti, Salvadego, Alemayehu, Grassi, and Lazzer are with the Dept of Medicine, University of Udine, Udine, Italy; and the School of Sport Sciences, University of Udine, Udine, Italy.

Giovanelli (nicola.giovanelli@uniud.it) is corresponding author.
  • 1.

    Scheer V. Participation trends of ultra endurance events. Sports Med Arthrosc Rev. 2019;27(1):37. PubMed ID: 30601393 doi:10.1097/JSA.0000000000000198

  • 2.

    Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP. Alterations of neuromuscular function after the world’s most challenging mountain ultra-marathon. PLoS ONE. 2013;8(6):e65596. PubMed ID: 23840345 doi:10.1371/journal.pone.0065596

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Temesi J, Rupp T, Martin V, et al. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Med Sci Sports Exerc. 2014;46(6):11661175. PubMed ID: 24195865 doi:10.1249/MSS.0000000000000207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Vernillo G, Savoldelli A, Skafidas S, et al. An extreme mountain ultra-marathon decreases the cost of uphill walking and running. Front Physiol. 2016;7:530. PubMed ID: 27877137 doi:10.3389/fphys.2016.00530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Savoldelli A, Fornasiero A, Trabucchi P, et al. The energetics during the world’s most challenging mountain ultra-marathon—a case study at the Tor des Geants®. Front Physiol. 2017;8:1003. PubMed ID: 29259560 doi:10.3389/fphys.2017.01003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lazzer S, Taboga P, Salvadego D, et al. Factors affecting metabolic cost of transport during a multi-stage running race. J Exp Biol. 2014;217(Pt 5):787795. PubMed ID: 24265425 doi:10.1242/jeb.091645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Grassi B, Quaresima V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: a review from an exercise physiology perspective. J Biomed Opt. 2016;21(9):091313. PubMed ID: 27443955 doi:10.1117/1.JBO.21.9.091313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vernillo G, Brighenti A, Limonta E, et al. Effects of ultratrail running on skeletal-muscle oxygenation dynamics. Int J Sports Physiol Perform. 2017;12(4):496504. doi:10.1123/ijspp.2015-0745

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Born DP, Stoggl T, Swaren M, Bjorklund G. Near-infrared spectroscopy: more accurate than heart rate for monitoring intensity in running in hilly terrain. Int J Sports Physiol Perform. 2017;12(4):440447. doi:10.1123/ijspp.2016-0101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Snyder AC, Parmenter MA. Using near-infrared spectroscopy to determine maximal steady state exercise intensity. J Strength Cond Res. 2009;23(6):18331840. PubMed ID: 19675475 doi:10.1519/JSC.0b013e3181ad3362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jones S, D’silva A, Bhuva A, et al. Improved exercise-related skeletal muscle oxygen consumption following uptake of endurance training measured using near-infrared spectroscopy. Front Physiol. 2017;8:1018. PubMed ID: 29311956 doi:10.3389/fphys.2017.01018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kano Y, Padilla DJ, Behnke BJ, Hageman KS, Musch TI, Poole DC. Effects of eccentric exercise on microcirculation and microvascular oxygen pressures in rat spinotrapezius muscle. J Appl Physiol. 2005;99(4):15161522. doi:10.1152/japplphysiol.00069.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fernstrom M, Bakkman L, Tonkonogi M, et al. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise. J Appl Physiol. 2007;102(5):18441849. doi:10.1152/japplphysiol.01173.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Salvadego D, Lazzer S, Marzorati M, et al. Functional impairment of skeletal muscle oxidative metabolism during knee extension exercise after bed rest. J Appl Physiol. 2011;111(6):17191726. PubMed ID: 21921243 doi:10.1152/japplphysiol.01380.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Salvadego D, Domenis R, Lazzer S, et al. Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training. J Appl Physiol. 2013;114(11):15271535. PubMed ID: 23519233 doi:10.1152/japplphysiol.00883.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jones PR, Pearson J. Anthropometric determination of leg fat and muscle plus bone volumes in young male and female adults. J Physiol. 1969;204(2):63P66P. PubMed ID: 5824654

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ferreira LF, Poole DC, Barstow TJ. Muscle blood flow—O2 uptake interaction and their relation to on-exercise dynamics of O2 exchange. Respir Physiol Neurobiol. 2005;147(1):91103. PubMed ID: 15848127 doi:10.1016/j.resp.2005.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ferreira LF, Koga S, Barstow TJ. Dynamics of noninvasively estimated microvascular O2 extraction during ramp exercise. J Appl Physiol. 2007;103(6):19992004. doi:10.1152/japplphysiol.01414.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Vernillo G, Savoldelli A, Zignoli A, et al. Influence of the world’s most challenging mountain ultra-marathon on energy cost and running mechanics. Eur J Appl Physiol. 2014;114(5):929939. PubMed ID: 24477570 doi:10.1007/s00421-014-2824-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gimenez P, Kerherve H, Messonnier LA, Feasson L, Millet GY. Changes in the energy cost of running during a 24-h treadmill exercise. Med Sci Sports Exerc. 2013;45(9):18071813. PubMed ID: 23524515 doi:10.1249/MSS.0b013e318292c0ec

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Millet GY, Tomazin K, Verges S, et al. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS ONE. 2011;6(2):e17059. PubMed ID: 21364944 doi:10.1371/journal.pone.0017059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kasikcioglu E, Arslan A, Topcu B, et al. Cardiac fatigue and oxygen kinetics after prolonged exercise. Int J Cardiol. 2006;108(2):286288. PubMed ID: 16517287 doi:10.1016/j.ijcard.2005.03.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sierra AP, da Silveira AD, Francisco RC, et al. Reduction in post-marathon peak oxygen consumption: sign of cardiac fatigue in amateur runners? Arq Bras Cardiol. 2016;106(2):9296. PubMed ID: 26760783

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Giandolini M, Horvais N, Rossi J, Millet GY, Morin JB, Samozino P. Acute and delayed peripheral and central neuromuscular alterations induced by a short and intense downhill trail run. Scand J Med Sci Sports. 2016;26(11):13211333. doi:10.1111/sms.12583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Overgaard K, Lindstrom T, Ingemann-Hansen T, Clausen T. Membrane leakage and increased content of Na+–K+ pumps and Ca2+ in human muscle after a 100-km run. J Appl Physiol. 2002;92(5):18911898. doi:10.1152/japplphysiol.00669.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Amann M, Calbet JA. Convective oxygen transport and fatigue. J Appl Physiol. 2008;104(3):861870. doi:10.1152/japplphysiol.01008.2007

  • 27.

    Davies RC, Eston RG, Poole DC, et al. Effect of eccentric exercise-induced muscle damage on the dynamics of muscle oxygenation and pulmonary oxygen uptake. J Appl Physiol. 2008;105(5):14131421. doi:10.1152/japplphysiol.90743.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Richardson RS, Poole DC, Knight DR, et al. High muscle blood flow in man: is maximal O2 extraction compromised? J Appl Physiol. 1993;75(4):19111916. PubMed ID: 8282650 doi:10.1152/jappl.1993.75.4.1911

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Porcelli S, Marzorati M, Lanfranconi F, Vago P, Pisot R, Grassi B. Role of skeletal muscles impairment and brain oxygenation in limiting oxidative metabolism during exercise after bed rest. J Appl Physiol. 2010;109(1):101111. doi:10.1152/japplphysiol.00782.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ferreira LF, McDonough P, Behnke BJ, Musch TI, Poole DC. Blood flow and O2 extraction as a function of O2 uptake in muscles composed of different fiber types. Respir Physiol Neurobiol. 2006;153(3):237249. PubMed ID: 16376620 doi:10.1016/j.resp.2005.11.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tonkonogi M, Walsh B, Svensson M, Sahlin K. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. J Physiol. 2000;528(Pt 2):379388. doi:10.1111/j.1469-7793.2000.00379.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Da Ponte A, Giovanelli N, Antonutto G, et al. Changes in cardiac and muscle biomarkers following an uphill-only marathon. Res Sports Med. 2018;26(1):100111. doi:10.1080/15438627.2017.1393750

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med. 2001;31(7):911922. PubMed ID: 11585710 doi:10.1016/S0891-5849(01)00667-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mrakic-Sposta S, Gussoni M, Moretti S, et al. Effects of mountain ultra-marathon running on ROS production and oxidative damage by micro-invasive analytic techniques. PLoS ONE. 2015;10(11):e0141780. PubMed ID: 26540518 doi:10.1371/journal.pone.0141780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 628 628 69
Full Text Views 13 13 3
PDF Downloads 9 9 3