Acute Ketone Supplementation and Exercise Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Pedro L. Valenzuela
Search for other papers by Pedro L. Valenzuela in
Current site
Google Scholar
PubMed
Close
,
Javier S. Morales
Search for other papers by Javier S. Morales in
Current site
Google Scholar
PubMed
Close
,
Adrián Castillo-García
Search for other papers by Adrián Castillo-García in
Current site
Google Scholar
PubMed
Close
, and
Alejandro Lucia
Search for other papers by Alejandro Lucia in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To determine the acute effects of ketone supplementation on exercise performance (primary outcome) and physiological and perceptual responses to exercise (secondary outcomes). Methods: A systematic search was conducted in PubMed, Web of Science, and SPORTDiscus (since inception to July 21, 2019) to find randomized controlled trials assessing the effects of acute ketone supplementation compared with a drink containing no ketones (ie, control intervention). The standardized mean difference (Hedges g) between interventions and 95% confidence interval (CI) were computed using a random-effects model. Results: Thirteen studies met all inclusion criteria. No significant differences were observed between interventions for overall exercise performance (Hedges g = −0.05; 95% CI, −0.30 to 0.20; P = .68). Subanalyses revealed no differences between interventions when analyzing endurance time-trial performance (g = −0.04; 95% CI, −0.35 to 0.28; P = .82) or when assessing the separate effects of supplements containing ketone esters (g = −0.07; 95% CI, −0.38 to 0.24; P = .66) or salts (g = −0.02; 95% CI, −0.45 to 0.41; P = .93). All studies reported increases in plasma ketone concentration after acute ketone supplementation, but no consistent effects were reported on the metabolic (plasma lactate and glucose levels), respiratory (respiratory exchange ratio, oxygen uptake, and ventilatory rate), cardiovascular (heart rate), or perceptual responses to exercise (rating of perceived exertion). Conclusions: The present findings suggest that ketone supplementation exerts no clear influence on exercise performance (from sprints to events lasting up to ∼50 min) or metabolic, respiratory, cardiovascular, or perceptual responses to exercise. More research is needed to elucidate if this strategy could provide ergogenic effects on other exercise types (eg, ultraendurance exercise).

Valenzuela is with the Dept of Systems Biology, School of Medicine, University of Alcalá, Madrid, Spain, and the Dept of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain. Morales and Lucia are with the Faculty of Sport Sciences, European University of Madrid, Madrid, Spain. Castillo-García is with Fissac—Physiology, Health, and Physical Activity, Madrid, Spain. Lucia is also with the Hospital 12 de Octubre (‘i+12’), Research Inst, Madrid, Spain.

Valenzuela (pedrol.valenzuela@edu.uah.es) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Mata F, Valenzuela PL, Gimenez J, et al. Carbohydrate availability and physical performance: physiological overview and practical recommendations. Nutrients. 2019;11(5):1084. doi:10.3390/nu11051084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Newman J, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 2014;25(1):4252. PubMed ID: 24140022 doi:10.1016/j.tem.2013.09.002

  • 3.

    Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017;25(2):262284. PubMed ID: 28178565 doi:10.1016/j.cmet.2016.12.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Maizels EZ, Ruderman NB, Goodman MN, Lau D. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem J. 1977;162(3):557568. PubMed ID: 869905 doi:10.1042/bj1620557

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol. 2017;595(9):28572871. PubMed ID: 27861911 doi:10.1113/JP273185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pinckaers PJ, Churchward-Venne TA, Bailey D, van Loon LJ. Ketone bodies and exercise performance: the next magic bullet or merely hype? Sport Med. 2017;47(3):383391. doi:10.1007/s40279-016-0577-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Egan B, D’Agostino DP. Fueling performance: ketones enter the mix. Cell Metab. 2016;24(3):373375. PubMed ID: 27626197. doi:10.1016/j.cmet.2016.08.021.

  • 8.

    Cox PJ, Kirk T, Ashmore T, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24(2):256268. PubMed ID: 27475046 doi:10.1016/j.cmet.2016.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hearris MA, Hammond KM, Fell JM, Morton JP. Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. Nutrients. 2018;10(3):121. doi:10.3390/nu10030298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Margolis LM, O’Fallon KS. Utility of ketone supplementation to enhance physical performance: a systematic review [published online ahead of print October 5, 2019]. Adv Nutr. doi:10.1093/advances/nmz104

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dearlove DJ, Faull OK, Rolls E, Clarke K, Cox PJ. Nutritional ketoacidosis during incremental exercise in healthy athletes. Front Physiol. 2019;10:16. doi:10.3389/fphys.2019.00290

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Evans M, Patchett E, Nally R, Kearns R, Larney M, Egan B. Effect of acute ingestion of β-hydroxybutyrate salts on the response to graded exercise in trained cyclists. Eur J Sport Sci. 2018;18(3):376386. PubMed ID: 29338584 doi:10.1080/17461391.2017.1421711

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Evans M, Egan B. Intermittent running and cognitive performance after ketone ester ingestion. Med Sci Sports Exerc. 2018;50(11):23302338. PubMed ID: 29944604 doi:10.1249/MSS.0000000000001700

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Evans M, McSwiney FT, Brady AJ, Egan B. No benefit of ingestion of a Ketone monoester supplement on 10-km running performance. Med Sci Sports Exerc. 2019;51(12):25062515. PubMed ID: 31730565 doi:10.1249/MSS.0000000000002065

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Faull OK, Dearlove DJ, Clarke K, Cox PJ. Beyond RPE: the perception of exercise under normal and ketotic conditions. Front Physiol. 2019;10:229. PubMed ID: 30941052 doi:10.3389/fphys.2019.00229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    James S, Kjerulf Greer B. Influence of exogenous β-hydroxybutyrate on walking economy and rating of perceived exertion. J Diet Suppl. 2019;16(4):463469. PubMed ID: 29953297 doi:10.1080/19390211.2018.1471562

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Leckey JJ, Ross ML, Quod M, Hawley JA, Burke LM. Ketone diester ingestion impairs time-trial performance in professional cyclists. Front Physiol. 2017;8:110. doi:10.3389/fphys.2017.00806

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    O’Malley T, Myette-Cote E, Durrer C, Little JP. Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males. Appl Physiol Nutr Metab. 2017;42(10):10311035. doi:10.1139/apnm-2016-0641

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rodger S, Plews D, Laursen P, Driller M. Oral β-hydroxybutyrate salt fails to improve 4-minute cycling performance following submaximal exercise. J Sci Cycl. 2017;6(1):2631.

    • Search Google Scholar
    • Export Citation
  • 20.

    Scott BE, Laursen PB, James LJ, et al. The effect of 1,3-butanediol and carbohydrate supplementation on running performance. J Sci Med Sport. 2019;22(6):702706. PubMed ID: 30553764 doi:10.1016/j.jsams.2018.11.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Shaw D, Merien F, Braakhuis A, Plews D, Laursen P, Dulson D. The effect of 1, 3-butanediol on cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2019;29(5):466473. PubMed ID: 30632425 doi:10.1123/ijsnem.2018-0284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Waldman H, Basham S, Price F, et al. Exogenous ketone salts do not improve cognitive responses after a high-intensity exercise protocol in healthy college-aged males. Appl Physiol Nutr Metab. 2018;43(7):711717. PubMed ID: 29451991. doi:10.1139/apnm-2017-0724.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. PubMed ID: 19621072 doi:10.1371/journal.pmed.1000097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343(7829):19. doi:10.1136/bmj.d5928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Burke LM. Re-examining high-fat diets for sports performance: did we call the ‘Nail in the Coffin’ too soon? Sports Med. 2015;45(suppl 1):S33S49. doi:10.1007/s40279-015-0393-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Stubbs B, Cox P, Kirk T, Evans R, Clarke K. Gastrointestinal effects of exogenous ketone drinks are infrequent, mild, and vary according to ketone compound and dose. Int J Sport Nutr Exerc Metab. 2019;29(6):596603. doi:10.1123/ijsnem.2019-0014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Stubbs B, Koutnik A, Poff A, Ford K, D’Agostino D. Commentary: ketone diester ingestion impairs time-trial performance in professional cyclists. Front Physiol. 2018;9:279. PubMed ID: 29637933. doi::.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Stubbs BJ, Cox PJ, Evans RD, et al. On the metabolism of exogenous ketones in humans. Front Physiol. 2017;8:113. doi:10.3389/fphys.2017.00848

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Takahashi Y, Terada S, Banjo M, Seike K, Nakano S, Hatta H. Effects of β-hydroxybutyrate treatment on glycogen repletion and its related signaling cascades in epitrochlearis muscle during 120 min of post-exercise recovery. Appl Physiol Nutr Metab. 2019;44(12):13111319. PubMed ID: 31051088 doi:10.1139/apnm-2018-0860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Vandoorne T, De Smet S, Ramaekers M, et al. Intake of a ketone ester drink during recovery from exercise promotes mTORC1 signaling but not glycogen resynthesis in human muscle. Front Physiol. 2017;8:112. doi:10.3389/fphys.2017.00310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Holdsworth DA, Cox PJ, Kirk T, Stradling H, Impey SG, Clarke K. A ketone ester drink increases postexercise muscle glycogen synthesis in humans. Med Sci Sports Exerc. 2017;49(9):17891795. PubMed ID: 28398950 doi:10.1249/MSS.0000000000001292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Poffé C, Ramaekers M, Van Thienen R, Hespel P. Ketone ester supplementation blunts overreaching symptoms during endurance training overload. J Physiol. 2019;597(12):30093027. doi:10.1113/JP277831

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Korevaar DA, Cohen JF, McInnes MDF. Ketone ester supplementation in endurance athletes: a miracle drink or ‘spin’? J Physiol. 2019;597(16):44074408. PubMed ID: 31414489 doi:10.1113/JP278296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bellinger P. Does ketone ester supplementation really blunt overreaching symptoms during endurance training overload? J Physiol. 2019;597(21):53075308. PubMed ID: 31674005 doi:10.1113/JP278830

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kanikarla-Marie P, Jain S. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic Biol Med. 2016;95:268277. PubMed ID: 27036365 doi:10.1016/j.freeradbiomed.2016.03.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8218 2012 128
Full Text Views 240 30 3
PDF Downloads 194 32 3