Effects of Weighted Vest Loading During Daily Living Activities on Countermovement Jump and Sprint Performance

Click name to view affiliation

Jeffrey D. Simpson
Search for other papers by Jeffrey D. Simpson in
Current site
Google Scholar
PubMed
Close
,
Ludmila Cosio-Lima
Search for other papers by Ludmila Cosio-Lima in
Current site
Google Scholar
PubMed
Close
,
Eric M. Scudamore
Search for other papers by Eric M. Scudamore in
Current site
Google Scholar
PubMed
Close
,
Eric K. O’Neal
Search for other papers by Eric K. O’Neal in
Current site
Google Scholar
PubMed
Close
,
Ethan M. Stewart
Search for other papers by Ethan M. Stewart in
Current site
Google Scholar
PubMed
Close
,
Brandon L. Miller
Search for other papers by Brandon L. Miller in
Current site
Google Scholar
PubMed
Close
,
Harish Chander
Search for other papers by Harish Chander in
Current site
Google Scholar
PubMed
Close
, and
Adam C. Knight
Search for other papers by Adam C. Knight in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Wearing a weighted vest (WV) during daily living and training can enhance jump and sprint performance; however, studies examining the efficacy of this method in female populations is limited. This study examined the effect of wearing a WV during daily living and training on countermovement jump (CMJ), change-of-direction, and sprint performance. Methods: Trained females were separated into intervention (n = 9) and control (n = 10) groups. The intervention group wore WVs of ∼8% body mass 4 days per week for 8 hours per day (32 h/wk total), and 3 training sessions per week for the first 3 weeks. Subsequently, 3 weeks of regular training without WV stimulus was completed. The control group received no intervention and continued normal training for 6 weeks. Average and best performance was assessed on the single CMJ, four continuous CMJ, t-test change-of-direction drill, and a 25-m sprint at baseline, week 3, and week 6. Results: No significant interactions or group effects were found. However, significant time main effects revealed increases in average rate of force development during the CMJ from baseline to week 3 (P = .048) and week 6 (P = .013), whereas peak vertical ground reaction force increased during the four continuous CMJ from baseline to week 3 (P = .048) and week 6 (P = .025) for both groups. Conclusions: The lower relative WV load used in this study failed to elicit significant improvements in jump and sprint performance in comparison with routine training, or that which have been found in past investigations with elite male athletes completing high-intensity performance tasks with greater WV loads.

Simpson and Cosio-Lima are with the Dept of Movement Sciences and Health, University of West Florida, Pensacola, FL, USA. Scudamore is with the Dept of Health, Physical Education, and Sport Sciences, Arkansas State University, Jonesboro, AR, USA. O’Neal is with the Dept of Health, Physical Education, and Recreation, University of North Alabama, Florence, AL, USA. Stewart, Miller, Chander, and Knight are with the Dept of Kinesiology, Mississippi State University, Mississippi State, MS, USA.

Simpson (jsimpson1@uwf.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Bosco C, Zanon S, Rusko H, et al. The influence of extra load on the mechanical behavior of skeletal muscle. Eur J Appl Physiol. 1984;53(2):149154. doi:10.1007/BF00422578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Simpson JD, Miller BL, O’Neal EK, Chander H, Knight AC. External load training does not alter balance performance in well-trained women. Sports Biomech. 2018;17(3):336349. PubMed ID: 28730867 doi:10.1080/14763141.2017.1341546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Simpson JD, Miller BL, O’Neal EK, Chander H, Knight AC. Ground reaction forces during a drop vertical jump: impact of external load training. Hum Mov Sci. 2018;59:1219. PubMed ID: 29579620 doi:10.1016/j.humov.2018.03.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lowe JB, Scudamore EM, Johnson SL, et al. External loading during daily living improves high intensity tasks under load. Int J Ind Ergon. 2016;55:3439. doi:10.1016/j.ergon.2016.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Scudamore EM, Lowe JB, Přibyslavská V, et al. Three week hypergravity training intervention decreases ground contact time during repeated jumping and improves sprinting and shuttle running performance. Int J Exerc Sci. 2016;9(2):149158.

    • Search Google Scholar
    • Export Citation
  • 6.

    Barr MJ, Gabbett TJ, Newton RU, Sheppard JM. Effect of 8 days of a hypergravity condition on the sprinting speed and lower-body power of elite rugby players. J Strength Cond Res. 2015;29(3):722729. PubMed ID: 25226329 doi:10.1519/JSC.0000000000000669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bosco C. Adaptive response of human skeletal muscle to simulated hypergravity condition. Acta Physiol Scand. 1985;124(4):507513. PubMed ID: 4050478 doi:10.1111/j.1748-1716.1985.tb00042.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bosco C, Rusko H, Hirvonen J. The effect of extra-load conditioning on muscle performance in athletes. Med Sci Sports Exerc. 1986;18(4):415419. PubMed ID: 3747801 doi:10.1249/00005768-198608000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sands WA, Poole RC, Ford HR, Cervantez RD, Irvin RC, Major JA. Hypergravity training: women’s track and field. J Strength Cond Res. 1996;10(1):3034.

    • Search Google Scholar
    • Export Citation
  • 10.

    Clark KP, Stearne DJ, Walts CT, Miller AD. The longitudinal effects of resisted sprint training using weighted sleds vs weighted vests. J Strength Cond Res. 2010;24(12):32873295. PubMed ID: 19996786 doi:10.1519/JSC.0b013e3181b62c0a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cronin J, Hansen K, Kawamori N, McNair P. Effects of weighted vests and sled towing on sprint kinematics. Sports Biomech. 2008;7(2):160172. PubMed ID: 18610770 doi:10.1080/14763140701841381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cross MR, Brughelli ME, Cronin JB. Effects of vest loading on sprint kinetics and kinematics. J Strength Cond Res. 2014;28(7):18671874. PubMed ID: 24378661 doi:10.1519/JSC.0000000000000354

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Rey E, Padron-Cabo A, Fernandez-Penedo D. Effects of sprint training with and without weighted vest on speed and repeated sprint ability in male soccer players. J Strength Cond Res. 2017;31(10):26592666. PubMed ID: 27893482 doi:10.1519/JSC.0000000000001726

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    O’Leary DD, Hope K, Sale DG. Influence of gender on post-tetanic potentiation in human dorsiflexors. Can J Physiol Pharmacol. 1998;76(7–8):772779. doi:10.1139/y98-108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Pauole K, Madole K, Garhammer J, Lacourse M, Rozenek R. Reliability and validity of the T-test as a measure of agility, leg power, and leg speed in college-aged men and women. J Strength Cond Res. 2000;14(4):443450.

    • Search Google Scholar
    • Export Citation
  • 16.

    Armstrong R, Greig M. The Functional Movement Screen and modified Star Excursion Balance Test as predictors of T-test agility performance in university rugby union and netball players. Phys Ther Sport. 2018;31:1521. PubMed ID: 29518691 doi:10.1016/j.ptsp.2018.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dabbs N, Brown L, Garner J. Effects of whole body vibration on vertical jump performance following exercise induced muscle damage. Int J Kine Sport Sci. 2014;2(1):18.

    • Search Google Scholar
    • Export Citation
  • 18.

    Harry JR, Paquette MR, Schilling BK, Barker LA, James CR, Dufek JS. Kinetic and electromyographic subphase characteristics with relation to countermovement vertical jump performance. J Appl Biomech. 2018;34(4):291297. PubMed ID: 29485344 doi:10.1123/jab.2017-0305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Garcia-Pinillos F, Martinez-Amat A, Hita-Contreras F, Martinez-Lopez EJ, Latorre-Roman PA. Effects of a contrast training program without external load on vertical jump, kicking speed, sprint, and agility of young soccer players. J Strength Cond Res. 2014;28(9):24522460. PubMed ID: 24626140 doi:10.1519/JSC.0000000000000452

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Harrison AJ, Bourke G. The effect of resisted sprint training on speed and strength performance in male rugby players. J Strength Cond Res. 2009;23(1):275283. PubMed ID: 19125101 doi:10.1519/JSC.0b013e318196b81f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Educ Exerc Sci. 2008;12(4):207218. doi:10.1080/10913670802349766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bosco C, Luhtanen P, Komi PV. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol. 1983;50(2):273282. doi:10.1007/BF00422166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Khlifa R, Aouadi R, Hermassi S, et al. Effects of a plyometric training program with and without added load on jumping ability in basketball players. J Strength Cond Res. 2010;24(11):29552961. PubMed ID: 20938357 doi:10.1519/JSC.0b013e3181e37fbe

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Markovic S, Mirkov DM, Knezevic OM, Jaric S. Jump training with different loads: effects on jumping performance and power output. Eur J Appl Physiol. 2013;113(10):25112521. PubMed ID: 23821239 doi:10.1007/s00421-013-2688-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cronin J, Hansen KT. Resisted sprint training for the acceleration phase of sprinting. Strength Cond J. 2006;28(4):3839. doi:10.1519/00126548-200608000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Swain DP, Onate JA, Ringleb SI, Naik DN, DeMaio M. Effects of training on physical performance wearing personal protective equipment. Mil Med. 2010;175(9):664670. PubMed ID: 20882929 doi:10.7205/MILMED-D-09-00198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Swain DP, Ringleb SI, Naik DN, Butowicz CM. Effect of training with and without a load on military fitness tests and marksmanship. J Strength Cond Res. 2011;25(7):18571865. PubMed ID: 21659886 doi:10.1519/JSC.0b013e318220dbcf

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2482 447 66
Full Text Views 60 20 2
PDF Downloads 41 12 0