Quantifying the Training-Intensity Distribution in Middle-Distance Runners: The Influence of Different Methods of Training-Intensity Quantification

Click name to view affiliation

Phillip Bellinger
Search for other papers by Phillip Bellinger in
Current site
Google Scholar
PubMed
Close
,
Blayne Arnold
Search for other papers by Blayne Arnold in
Current site
Google Scholar
PubMed
Close
, and
Clare Minahan
Search for other papers by Clare Minahan in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare the training-intensity distribution (TID) across an 8-week training period in a group of highly trained middle-distance runners employing 3 different methods of training-intensity quantification. Methods: A total of 14 highly trained middle-distance runners performed an incremental treadmill test to exhaustion to determine the heart rate (HR) and running speed corresponding to the ventilatory thresholds (gas-exchange threshold and respiratory-compensation threshold), as well as fixed rating of perceived exertion (RPE) values, which were used to demarcate 3 training-intensity zones. During the following 8 weeks, the TID (total and percentage of time spent in each training zone) of all running training sessions (N = 695) was quantified using continuous running speed, HR monitoring, and RPE. Results: Compared with the running-speed-derived TID (zone 1, 79.9% [7.3%]; zone 2, 5.3% [4.9%]; and zone 3, 14.7% [7.3%]), HR-demarcated TID (zone 1, 79.6% [7.2%]; zone 2, 17.0% [6.3%]; and zone 3, 3.4% [2.0%]) resulted in a substantially higher training time in zone 2 (effect size ± 95% confidence interval: −1.64 ± 0.53; P < .001) and lower training time in zone 3 (−1.59 ± 0.51; P < .001). RPE-derived TID (zone 1, 39.6% [8.4%]; zone 2, 31.9% [8.7%]; and zone 3, 28.5% [11.6%]) reduced time in zone 1 compared with both HR (−5.64 ± 1.40; P < .001) and running speed (−5.69 ± 1.9; P < .001), whereas time in RPE training zones 2 and 3 was substantially higher than both HR- and running-speed-derived zones. Conclusion: The results show that the method of training-intensity quantification substantially affects computation of TID.

Bellinger, Arnold, and Minahan are with Griffith Sports Physiology and Performance, Griffith University, Gold Coast, QLD, Australia. Bellinger is also with Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.

Bellinger (p.bellinger@griffith.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295.

  • 2.

    Seiler KS, Kjerland . Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):4956. PubMed ID: 16430681 doi:10.1111/j.1600-0838.2004.00418.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Neal CM, Hunter AM, Brennan L, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol. 2013;114(4):461471. PubMed ID: 23264537 doi:10.1152/japplphysiol.00652.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Muñoz I, Seiler S, Bautista J, España J, Larumbe E, Esteve-Lanao J. Does polarized training improve performance in recreational runners? Int J Sports Physiol. 2014;9(2):265272. doi:10.1123/ijspp.2012-0350

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Stöggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sanders D, Myers T, Akubat I. Training-intensity distribution in road cyclists: objective versus subjective measures. Int J Sports Physiol. 2017;12(9):12321237. doi:10.1123/ijspp.2016-0523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Esteve-Lanao J, San Juan AF, Earnest CP, Foster C, Lucia A. How do endurance runners actually train? Relationship with competition performance. Med Sci Sport Exerc. 2005;37(3):496504. doi:10.1249/01.MSS.0000155393.78744.86

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Tjelta LI, Enoksen E. Training characteristics of male junior cross country and track runners on European top level. Int J Sports Sci Coach. 2010;5(2):193203. doi:10.1260/1747-9541.5.2.193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Davis JA, Convertino VA. A comparison of heart rate methods for predicting endurance training intensity. Med Sci Sports Exerc. 1975;7(4):295298. doi:10.1249/00005768-197500740-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30:11641168. PubMed ID: 9662690 doi:10.1097/00005768-199807000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol. 2010;5(3):276291. doi:10.1123/ijspp.5.3.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. Plos ONE. 2018;13(7):e0199794. PubMed ID: 30059543 doi:10.1371/journal.pone.0199794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Ingham SA, Carter H, Whyte GP, Doust JH. Physiological and performance effects of low-versus mixed-intensity rowing training. Med Sci Sport Exerc. 2008;40(3):579584. doi:10.1249/MSS.0b013e31815ecc6a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Schumacher YO, Mueller P. The 4000-m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sport Exerc. 2002;34(6):10291036. doi:10.1097/00005768-200206000-00020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Tønnessen E, Sylta Ø, Haugen TA, Hem E, Svendsen IS, Seiler S. The road to gold: training and peaking characteristics in the year prior to a gold medal endurance performance. Plos One. 2014;9(7):e101796. doi:10.1371/journal.pone.0101796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alejandro L, Jesús H, Javier P, José C. Metabolic and neuromuscular adaptations to endurance training in professional cyclists: a longitudinal study. Jpn J Physiol. 2000;50:381388. doi:10.2170/jjphysiol.50.381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Billat VL, Demarle A, Slawinski J, Paiva M, Koralsztein JP. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc. 2001;33(12):20892097. PubMed ID: 11740304 doi:10.1097/00005768-200112000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Stellingwerff T. Case study: nutrition and training periodization in three elite marathon runners. Int J Sport Nutr Exerc Metab. 2012;22(5):392400. doi:10.1123/ijsnem.22.5.392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Zapico A, Calderon F, Benito P, et al. Evolution of physiological and haematological parameters with training load in elite male road cyclists: a longitudinal study. J Sports Med Phys Fitness. 2007;47:191196. PubMed ID: 17557057

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart-rate variability and training-intensity distribution in elite rowers. Int J Sports Physiol. 2014;9(6):10261032. doi:10.1123/ijspp.2013-0497

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Billat V, Lepretre P-M, Heugas A-M, Laurence M-H, Salim D, Koralsztein JP. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sport Exerc. 2003;35(2):297304. doi:10.1249/01.MSS.0000053556.59992.A9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Billat VL, Flechet B, Petit B, Muriaux G, Koralsztein JP. Interval training at VO2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc. 1999;31(1):156163. PubMed ID: 9927024 doi:10.1097/00005768-199901000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):20202027. PubMed ID: 3087938 doi:10.1152/jappl.1986.60.6.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Garcin M, Vautier J-F, Vandewalle H, Wolff M, Monod H. Ratings of perceived exertion (RPE) during cycling exercises at constant power output. Ergonomics. 1998;41(10):15001509. PubMed ID: 9802254 doi:10.1080/001401398186234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Manzi V, Bovenzi A, Castagna C, Salimei PS, Volterrani M, Iellamo F. Training-load distribution in endurance runners: objective versus subjective assessment. Int J Sports Physiol. 2015;10(8):10231028. doi:10.1123/ijspp.2014-0557

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Esteve-Lanao J, Foster C, Seiler S, Lucia A. Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res. 2007;21(3):943949. PubMed ID: 17685689

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ingham SA, Fudge BW, Pringle JS. Training distribution, physiological profile, and performance for a male international 1500-m runner. Int J Sports Physiol. 2012;7(2):193195. doi:10.1123/ijspp.7.2.193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Decroix L, Lamberts RP, Meeusen R. Can the lamberts and lambert submaximal cycle test reflect overreaching in professional cyclists? Int J Sports Physiol. 2018;13(1):2328. doi:10.1123/ijspp.2016-0685

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Sanders D, Heijboer M, Hesselink MKC, Myers T, Akubat I. Analysing a cycling grand tour: can we monitor fatigue with intensity or load ratios? J Sports Sci. 2018;36(12):13851391. PubMed ID: 29016241 doi:10.1080/02640414.2017.1388669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6920 1165 181
Full Text Views 259 49 1
PDF Downloads 273 54 4