Ischemic Preconditioning: Improved Cycling Performance Despite Nocebo Expectation

Click name to view affiliation

Christian P. Cheung
Search for other papers by Christian P. Cheung in
Current site
Google Scholar
PubMed
Close
,
Joshua T. Slysz
Search for other papers by Joshua T. Slysz in
Current site
Google Scholar
PubMed
Close
, and
Jamie F. Burr
Search for other papers by Jamie F. Burr in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Ischemic preconditioning (IPC) through purposeful circulatory occlusion may enhance exercise performance. The value of IPC for improving performance is controversial owing to challenges with employing effective placebo controls. This study examines the efficacy of IPC versus a deceptive sham protocol for improving performance to determine whether benefits of IPC are attributable to true physiological effects. It was hypothesized that IPC would favorably alter performance more than a sham treatment and that physiological responses to exercise would be affected only after IPC treatment. Methods: In a randomized order, 16 participants performed incremental exercise to exhaustion on a cycle ergometer in control conditions and after sham and IPC treatments. Participants rated their belief as to the efficacy of each treatment compared with control. Results: Time to exhaustion was greatest after IPC (control = 1331 [270] s, IPC = 1429 [300] s, sham = 1343 [255] s, P = .02), despite negative performance expectations after IPC and positive expectation after sham. Maximal aerobic power remained unchanged after both SHAM and IPC (control = 42.0 [5.2], IPC = 41.7 [5.5], sham = 41.6 [5.5] mL·kg−1·min−1, P = .7), as did submaximal lactate concentration (control = 8.9 [2.6], sham = 8.0 [1.9], IPC = 7.7 [2.1] mmol, P = .1) and oxygen uptake (control = 37.8 [4.8], sham = 37.5 [5.3], IPC = 37.5 [5.5] mL·kg−1·min−1, P = .6). Conclusions: IPC before cycling exercise provides an ergogenic benefit that is not attributable to a placebo effect from positive expectation and that was not explained by traditionally suggested mechanisms.

The authors are with the Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.

Burr (burrj@uoguelph.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):11241136. PubMed ID: 3769170 doi:10.1161/01.CIR.74.5.1124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46(3):450456. PubMed ID: 16053957 doi:10.1016/j.jacc.2005.04.044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Das M, Das DK. Molecular mechanism of preconditioning. IUBMB Life. 2008;60(4):199203. PubMed ID: 18344203 doi:10.1002/iub.31

  • 4.

    Thijssen DHJ, Maxwell J, Green DJ, Cable NT, Jones H. Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms. Exp Physiol. 2016;101(6):677692. PubMed ID: 26970535 doi:10.1113/EP085566

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol. 1986;251(6, Pt. 2):H1306H1315. PubMed ID: 3789183 doi:10.1152/ajpheart.1986.251.6.H1306

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cabrera JA, Ziemba EA, Colbert R, et al. Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning. AJP Hear Circ Physiol. 2012;302(10):H1974H1982. doi:10.1152/ajpheart.00372.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lintz JA, Dalio MB, Joviliano EE, Piccinato CE. Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. Acta Cir Bras. 2013;28(6):441446. PubMed ID: 23743682 doi:10.1590/S0102-86502013000600007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cruz RS de O, de Aguiar RA, Turnes T, Pereira KL, Caputo F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol. 2015;119(9):961967. doi:10.1152/japplphysiol.00498.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT, Thijssen DHJ. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc. 2012;44(11):20842089. PubMed ID: 22843115 doi:10.1249/MSS.0b013e318262cb17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pang CY, Yang RZ, Zhong A, Xu N, Boyd B, Forrest CR. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res. 1995;29(6):782788. PubMed ID: 7656281 doi:10.1016/S0008-6363(96)88613-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kido K, Suga T, Tanaka D, et al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3(5):e12395. doi:10.14814/phy2.12395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Enko K, Nakamura K, Yunoki K, et al. Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci. 2011;61(6):507513. PubMed ID: 21901641 doi:10.1007/s12576-011-0172-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Incognito AV, Burr JF, Millar PJ. The effects of ischemic preconditioning on human exercise performance. Sport Med. 2016;46(4):531544. doi:10.1007/s40279-015-0433-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Barbosa TC, Machado AC, Braz ID, et al. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand J Med Sci Sport. 2015;25(3):356364. doi:10.1111/sms.12229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    De Groot PCE, Thijssen DHJ, Sanchez M, Ellenkamp R, Hopman MTE. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010;108(1):141146. PubMed ID: 19760432 doi:10.1007/s00421-009-1195-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jean-St-Michel E, Manlhiot C, Li J, et al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011;43(7):12801286. PubMed ID: 21131871 doi:10.1249/MSS.0b013e318206845d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Marocolo M, Da Mota GR, Pelegrini V, Appell Coriolano HJ. Are the beneficial effects of ischemic preconditioning on performance partly a placebo effect? Int J Sports Med. 2015;36(10):822825. PubMed ID: 26058479 doi:10.1055/s-0035-1549857

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sabino-Carvalho JL, Lopes TR, Obeid-Freitas T, et al. Effect of ischemic preconditioning on endurance performance does not surpass placebo. Med Sci Sports Exerc. 2017;49(1):124132. PubMed ID: 27580156 doi:10.1249/MSS.0000000000001088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Beedie CJ, Coleman DA, Foad AJ. Positive and negative placebo effects resulting from the deceptive administration of an ergogenic aid. Int J Sport Nutr Exerc Metab. 2007;17(3):259269. PubMed ID: 17693687 doi:10.1123/ijsnem.17.3.259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Loftin M, Sothern M, Warren B, Udall J. Comparison of VO2 peak during treadmill and cycle ergometry in severely overweight youth. J Sport Sci Med. 2004;3(4):554560. http://www.jssm.org/vol3/n4/8/v3n4-8pdf.pdf

    • Search Google Scholar
    • Export Citation
  • 21.

    World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):21912194. doi:10.1001/jama.2013.281053

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 23.

    Beedie CJ, Foad AJ. The placebo effect in sports performance: a brief review. Sport Med. 2009;39(4):313329. doi:10.2165/00007256-200939040-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Marocolo M, Billaut F, da Mota GR. Ischemic preconditioning and exercise performance: an ergogenic aid for whom? Front Physiol. 2018;9:1874. PubMed ID: 30622484 doi:10.3389/fphys.2018.01874

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Clevidence MW, Mowery RE, Kushnick MR. The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. Eur J Appl Physiol. 2012;112(10):36493654. PubMed ID: 22350355 doi:10.1007/s00421-012-2345-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Crisafulli A, Tangianu F, Tocco F, et al. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol. 2011;111(2):530536. PubMed ID: 21617078 doi:10.1152/japplphysiol.00266.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Orban JC, Levraut J, Gindre S, et al. Effects of acetylcysteine and ischaemic preconditioning on muscular function and postoperative pain after orthopaedic surgery using a pneumatic tourniquet. Eur J Anaesthesiol. 2006;23(12):10251030. PubMed ID: 16780616 doi:10.1017/S026502150600086X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dickson EW, Blehar DJ, Carraway RE, Heard SO, Steinberg G, Przyklenk K. Naloxone blocks transferred preconditioning in isolated rabbit hearts. J Mol Cell Cardiol. 2001;33(9):17511756. PubMed ID: 11549353 doi:10.1006/jmcc.2001.1436

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Edwards RB, Tofari PJ, Cormack SJ, Whyte DG. Non-motorized treadmill running is associated with higher cardiometabolic demands compared with overground and motorized treadmill running. Front Physiol. 2017;8:914. PubMed ID: 29184508 doi:10.3389/fphys.2017.00914

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Aubry RL, Power GA, Burr JF. An assessment of running power as a training metric for elite and recreational runners. J Strength Cond Res. 2018;32(8):22582264. PubMed ID: 29912073

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2816 575 21
Full Text Views 73 14 1
PDF Downloads 48 6 2