Impact of Polarized Versus Threshold Training on Fat Metabolism and Neuromuscular Variables in Ultrarunners

Click name to view affiliation

Andrés Pérez
Search for other papers by Andrés Pérez in
Current site
Google Scholar
PubMed
Close
,
Domingo J. Ramos-Campo
Search for other papers by Domingo J. Ramos-Campo in
Current site
Google Scholar
PubMed
Close
,
Cristian Marín-Pagan
Search for other papers by Cristian Marín-Pagan in
Current site
Google Scholar
PubMed
Close
,
Francisco J. Martínez-Noguera
Search for other papers by Francisco J. Martínez-Noguera in
Current site
Google Scholar
PubMed
Close
,
Linda H. Chung
Search for other papers by Linda H. Chung in
Current site
Google Scholar
PubMed
Close
, and
Pedro E. Alcaraz
Search for other papers by Pedro E. Alcaraz in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare the effects of 2 different intensity distribution training programs (threshold [THR] and polarized [POL]) on fat metabolism and neuromuscular variables. Methods: Twenty ultrarunners were allocated to POL (n = 11; age 40.6 [9.7] y, weight 73.5 [10.8] kg, VO2max 55.8 [4.9] mL·kg−1·min−1) or THR group (n = 9; age 36.8 [9.2] y, weight 75.5 [10.4] kg, VO2max 57.1 [5.2] mL·kg−1·min−1) and performed a 12-week training program that consisted of 5 running sessions, 2 strength sessions, and 1 day of full rest per week. Both groups performed similar total training duration and load but with different intensity distribution during running sessions. Resting metabolic rate, fat metabolism, isometric rate of force development (RFD; N·s−1) and maximal voluntary contraction in the knee extensor, and electromyographic amplitude were measured before and after each program. Results: A significant decrease in RFD0–100 ms (Δ −13.4%; P ≤ .001; effect size [ES] = 1.00), RFD0–200 ms (Δ −11.7%; P ≤ .001; ES = 1.4), and RFDpeak (Δ −18%; P ≤ .001; ES = 1.4) were observed in the POL group. In THR group, a significant increase in mean electromyographic amplitude (Δ 24.4%; P = .02; ES = 1.4) was observed. There were no significant differences between groups in any of the variables. Conclusions: Similar adaptations in fat metabolism and neuromuscular performance can be achieved after 12 weeks of POL or THR intensity distribution. However, THR distribution appears to better maintain strength (RFD) and improve mean electromyographic amplitude. Nevertheless, the combination of both running and maximum strength training could influence on results because of the residual fatigue thus inducing suboptimal adaptations in the POL group.

The authors are with the Faculty of Sport Sciences, Catholic University of Murcia, Murcia, Spain; and the UCAM Research Center for High Performance Sport, Murcia, Spain.

Ramos-Campo (domingojesusramos@gmail.com; djramos@ucam.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Knechtle B, Nikolaidis PT. Physiology and pathophysiology in ultra-marathon running. Front Physiol. 2018;9:634. PubMed ID: 29910741 doi:10.3389/fphys.2018.00634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ramos-Campo DJ, Ávila-Gandía V, Alacid F, et al. Muscle damage, physiological changes, and energy balance in ultra-endurance mountain-event athletes. Appl Physiol Nutr Metab. 2016;41(8):872878. PubMed ID: 27447685 doi:10.1139/apnm-2016-0093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Coyle EF. Physiological determinants of endurance exercise performance. J Sci Med Sport. 1999;2(3):181189. PubMed ID: 10668757 doi:10.1016/S1440-2440(99)80172-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Guglielmo L, Greco C, Denadai B. Effects of strength training on running economy. Int J Sports Med. 2009;30(1):2732. PubMed ID: 18975259 doi:10.1055/s-2008-1038792

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Leveritt M, Abernethy PJ, Barry BK, Logan PA. Concurrent strength and endurance training. A review. Sports Med. 1999;28(6):413427. doi:10.2165/00007256-199928060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Docherty D, Sporer B. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med. 2000;30(6):385394. doi:10.2165/00007256-200030060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Seiler S, Tønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13(13):3253.

    • Search Google Scholar
    • Export Citation
  • 9.

    Pérez A, Ramos-Campo DJ, Freitas TT, Rubio-Arias , Marín-Cascales E, Alcaraz PE. Effect of two different intensity distribution training programmes on aerobic and body composition variables in ultra-endurance runners. Eur J Sport Sci. 2019;19(5):636644. doi:10.1080/17461391.2018.1539124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kenneally M, Casado A, Santos-Concejero J. The effect of periodisation and training intensity distribution on middle- and long-distance running performance: a systematic review. Int J Sports Physiol Perform. 2017;13(9):11141121. doi:10.1123/ijspp.2017-0327

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Balducci P, Clémençon M, Trama R, Blache Y, Hautier C. Performance factors in a mountain ultramarathon. Int J Sports Med. 2017;38(11):819826. PubMed ID: 28799161 doi:10.1055/s-0043-112342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Evertsen F, Medbø JI, Bonen A. Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers. Acta Physiol Scand. 2001;173(2):195205. PubMed ID: 11683677 doi:10.1046/j.1365-201X.2001.00871.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Muñoz I, Seiler S, Bautista J, España J, Larumbe E, Esteve-Lanao J. Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform. 2014;9(2):265272. doi:10.1123/ijspp.2012-0350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stoggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33. PubMed ID: 24550842 doi:10.3389/fphys.2014.00033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lima-Silva AE, Bertuzzi RCM, Pires FO, et al. Relationship between training status and maximal fat oxidation rate. J Sports Sci Med. 2010;9(1):3135. PubMed ID: 24149383

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Frandsen J, Vest SD, Larsen S, Dela F, Helge JW. Maximal fat oxidation is related to performance in an ironman triathlon. Int J Sports Med. 2017;38(13):975982. PubMed ID: 29050040 doi:10.1055/s-0043-117178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 2018;15(1):110. doi:10.1186/s12970-018-0207-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Dandanell S, Meinild-Lundby AK, Andersen AB, et al. Determinants of maximal whole-body fat oxidation in elite cross-country skiers: role of skeletal muscle mitochondria. Scand J Med Sci Sports. 2018;28(12):24942504. PubMed ID: 30218613 doi:10.1111/sms.13298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Boullosa D, Abreu L, Conceição F, Cordero Y, Jimenez-Reyes P. The influence of training background on different rate of force calculations during countermovement jump. Kinesiology. 2018;50(1):9095.

    • Search Google Scholar
    • Export Citation
  • 20.

    Ramos-Campo DJ, Rubio-Arias JA, Dufour S, Chung L, Avila-Gandia V, Alcaraz PE. Biochemical responses and physical performance during high-intensity resistance circuit training in hypoxia and normoxia. Eur J Appl Physiol. 2017;117(4):809818. PubMed ID: 28260202 doi:10.1007/s00421-017-3571-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sylta Ø, Tønnessen E, Hammarström D, et al. The effect of different high-intensity periodization models on endurance adaptations. Med Sci Sports Exerc. 2016;48(11):21652174. PubMed ID: 27300278 doi:10.1249/MSS.0000000000001007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Aagaard P, Andersen JL. Effects of strength training on endurance capacity in top-level endurance athletes. Scand J Med Sci Sports. 2010;20(2):3947. doi:10.1111/j.1600-0838.2010.01197.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Giovanelli N, Taboga P, Rejc E, Lazzer S. Effects of strength, explosive and plyometric training on energy cost of running in ultra-endurance athletes. Eur J Sport Sci. 2017;17(7):805813. PubMed ID: 28394719 doi:10.1080/17461391.2017.1305454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rønnestad BR, Hansen EA, Raastad T. High volume of endurance training impairs adaptations to 12 weeks of strength training in well-trained endurance athletes. Eur J Appl Physiol. 2012;112(4):14571466. doi:10.1007/s00421-011-2112-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743762. doi:10.1007/s40279-014-0162-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Aagaard P, Andersen JL, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sports. 2011;21(6):298307. doi:10.1111/j.1600-0838.2010.01283.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Wilmore JH, Stanforth PR, Hudspeth LA, et al. Alterations in resting metabolic rate as a consequence of 20 wk of endurance training: the HERITAGE Family Study. Am J Clin Nutr. 1998;68(1):6671. PubMed ID: 9665098 doi:10.1093/ajcn/68.1.66

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Byrne HK, Wilmore JH. The effects of a 20-week exercise training program on resting metabolic rate in previously sedentary, moderately obese women. Int J Sport Nutr Exerc Metab. 2001;11(1):1531. PubMed ID: 11255134 doi:10.1123/ijsnem.11.1.15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Woods AL, Sharma AP, Garvican-Lewis LA, Saunders PU, Rice AJ, Thompson KG. Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. Int J Sport Nutr Exerc Metab. 2017;27(1):8390. PubMed ID: 27459673 doi:10.1123/ijsnem.2016-0116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Morville T, Rosenkilde M, Munch-Andersen T, et al. Repeated prolonged exercise decreases maximal fat oxidation in older men. Med Sci Sports Exerc. 2017;49(2):308316. PubMed ID: 27685008 doi:10.1249/MSS.0000000000001107

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Scharhag-Rosenberger F, Meyer T, Walitzek S, Kindermann W. Effects of one year aerobic endurance training on resting metabolic rate and exercise fat oxidation in previously untrained men and women. Metabolic endurance training adaptations. Int J Sports Med. 2010;31(7):498504. PubMed ID: 20432193 doi:10.1055/s-0030-1249621

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Bartlett JD, Hawley JA, Morton JP. Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci. 2015;15(1):312. PubMed ID: 24942068 doi:10.1080/17461391.2014.920926

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Doma K, Deakin GB, Schumann M, Bentley DJ. Training considerations for optimising endurance development : an alternate concurrent training perspective. Sports Med. 2019;49(5):669682. PubMed ID: 30847824 doi:10.1007/s40279-019-01072-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3175 523 64
Full Text Views 76 24 1
PDF Downloads 54 20 1