Increasing Oxygen Uptake in Well-Trained Cross-Country Skiers During Work Intervals With a Fast Start

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Bent R. Rønnestad
Search for other papers by Bent R. Rønnestad in
Current site
Google Scholar
PubMed
Close
,
Tue Rømer
Search for other papers by Tue Rømer in
Current site
Google Scholar
PubMed
Close
, and
Joar Hansen
Search for other papers by Joar Hansen in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute effect of a roller-ski skating session containing work intervals with a fast start followed by decreasing speed (DEC) with a traditional session where the work intervals had a constant speed (similar to the mean speed of DEC; TRAD) on physiological responses, rating of perceived exertion, and leg press peak power. Methods: A total of 11 well-trained cross-country skiers performed DEC and TRAD in a randomized order (5 × 5-min work intervals, 3-min relief). Each 5-minute work interval in the DEC protocol started with 1.5 minutes at 100% of maximal aerobic speed followed by 3.5 minutes at 85% of maximal aerobic speed, whereas the TRAD protocol had a constant speed at 90% of maximal aerobic speed. Results: DEC induced a higher VO2 than TRAD, measured as both peak and average of all work intervals during the session (98.2% [2.1%] vs 95.4% [3.1%] VO2peak, respectively, and 87.6% [1.9%] vs 86.1% [3.2%] VO2peak, respectively) with a lower mean rating of perceived exertion after DEC than TRAD (16.1 [1.0] vs 16.5 [0.7], respectively) (all P < .05). There were no differences between sessions for mean heart rate, blood lactate concentration, or leg press peak power. Conclusion: DEC induced a higher mean VO2 and a lower rating of perceived exertion than TRAD, despite similar mean speed, indicating that DEC can be a good strategy for interval sessions aiming to accumulate more time at a high percentage of VO2peak.

The authors are with the Inland Norway University of Applied Sciences, Lillehammer, Norway.

Rønnestad (bent.ronnestad@inn.no) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Holmberg HC. The elite cross-country skier provides unique insights into human exercise physiology. Scand J Med Sci Sport. 2015;25:100109. PubMed ID: 26589123 doi:10.1111/sms.12601

    • Search Google Scholar
    • Export Citation
  • 2.

    Sandbakk Ø, Hegge AM, Losnegard T, Skattebo Ø, Tønnessen E, Holmberg HC. The physiological capacity of the world’s highest ranked female cross-country skiers. Med Sci Sports Exerc. 2016;48:10911100. PubMed ID: 26741124 doi:10.1249/MSS.0000000000000862

    • Search Google Scholar
    • Export Citation
  • 3.

    Sandbakk Ø, Sandbakk SB, Ettema G, Welde B. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J Strength Cond Res. 2013;27:19741980. PubMed ID: 23037620 doi:10.1519/JSC.0b013e3182752f08

    • Search Google Scholar
    • Export Citation
  • 4.

    Sandbakk Ø, Holmberg HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017;12:10031011. PubMed ID: 28095083 doi:10.1123/ijspp.2016-0749

    • Search Google Scholar
    • Export Citation
  • 5.

    Thevenet D, Tardieu-Berger M, Berthoin S, Prioux J. Influence of recovery mode (passive vs active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol. 2007;99:133142. PubMed ID: 17115178 doi:10.1007/s00421-006-0327-1

    • Search Google Scholar
    • Export Citation
  • 6.

    Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36:117132. PubMed ID: 16464121 doi:10.2165/00007256-200636020-00003

    • Search Google Scholar
    • Export Citation
  • 7.

    Turnes T, de Aguiar RA, Cruz RS, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116:161169. PubMed ID: 26373721 doi:10.1007/s00421-015-3263-0

    • Search Google Scholar
    • Export Citation
  • 8.

    Hill DW, Williams CS, Burt SE. Responses to exercise at 92% and 100% of the velocity associated with VO2max. J Sport Sci Med. 1997;18:325329. PubMed ID: 9298771 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Billat V, Bernard O, Pinoteau J, Petit B, Koralsztein JP. Time to exhaustion at VO2max and lactate steady state velocity in sub elite long-distance runners. Arch Int Physiol Biochim Biophys. 1994;102(3):215219. PubMed ID: 8000045

    • Search Google Scholar
    • Export Citation
  • 10.

    Rønnestad BR, Hansen J. Optimizing interval training at power output associated with peak oxygen uptake in well-trained cyclists. J Strength Cond Res. 2016;30(4):9991006. PubMed ID: 23942167 doi:10.1519/JSC.0b013e3182a73e8a

    • Search Google Scholar
    • Export Citation
  • 11.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43:313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Search Google Scholar
    • Export Citation
  • 12.

    Ariyoshi M, Tanaka H, Kanamori K, et al. Influence of running pace upon performance: effects upon oxygen intake, blood lactate, and rating of perceived exertion. Can J Appl Sport Sci. 1979;4:210213. PubMed ID: 540415

    • Search Google Scholar
    • Export Citation
  • 13.

    Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med Sci Sports Exerc. 2002;34:10411047. PubMed ID: 12048335 doi:10.1097/00005768-200206000-00022

    • Search Google Scholar
    • Export Citation
  • 14.

    Billat V, Petot H, Karp JR, Sarre G, Morton RH, Mille-Hamard L. The sustainability of VO2max: effect of decreasing the workload. Eur J Appl Physiol. 2013;113:385394. PubMed ID: 22752344 doi:10.1007/s00421-012-2424-7

    • Search Google Scholar
    • Export Citation
  • 15.

    Lisboa FD, Salvador AF, Raimundo JA, Pereira KL, de Aguiar RA, Caputo F. Decreasing power output increases aerobic contribution during low-volume severe-intensity intermittent exercise. J Strength Cond Res. 2015;29:24342440. PubMed ID: 26308828 doi:10.1519/JSC.0000000000000914

    • Search Google Scholar
    • Export Citation
  • 16.

    Zadow EK, Gordon N, Abbiss CR, Peiffer JJ. Pacing, the missing piece of the puzzle to high-intensity interval training. Int J Sports Med. 2015;36:215219. PubMed ID: 25415386 doi:10.1055/s-0034-1389973

    • Search Google Scholar
    • Export Citation
  • 17.

    Caputo F, Denadai BS. Exercise mode affects the time to achieve VO2max without influencing maximal exercise time at the intensity associated with VO2max in triathletes. Int J Sports Med. 2006;27:798803. PubMed ID: 16586327 doi:10.1055/s-2005-872962

    • Search Google Scholar
    • Export Citation
  • 18.

    Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 2000;89:899907. PubMed ID: 10956332 doi:10.1152/jappl.2000.89.3.899

    • Search Google Scholar
    • Export Citation
  • 19.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Search Google Scholar
    • Export Citation
  • 20.

    Sylta Ø, Tønnessen E, Seiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9(1):100107. PubMed ID: 24408353 doi:10.1123/ijspp.2013-0298

    • Search Google Scholar
    • Export Citation
  • 21.

    Sandbakk Ø, Holmberg HC, Leirdahl S, Ettema G. Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers. Eur J Appl Physiol. 2010;109:473481. PubMed ID: 20151149 doi:10.1007/s00421-010-1372-3

    • Search Google Scholar
    • Export Citation
  • 22.

    McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):15231546. PubMed ID: 26400696 doi:10.1007/s40279-015-0376-x

    • Search Google Scholar
    • Export Citation
  • 23.

    Losnegard T, Myklebust H, Hallén J. Anaerobic capacity as a determinant of performance in sprint skiing. Med Sci Sports Exerc. 2012;44:673681. PubMed ID: 21952633 doi:10.1249/MSS.0b013e3182388684

    • Search Google Scholar
    • Export Citation
  • 24.

    Demarie S, Koralsztein JP, Billat V. Time limit and time at VO2max during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40(2):96102. PubMed ID: 11034428

    • Search Google Scholar
    • Export Citation
  • 25.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 2008;14:377381.

  • 26.

    Earles DR, Judge JO, Gunnarsson OT. Velocity training induces power-specific adaptations in highly functioning older adults. Arch Phys Med Rehabil. 2000;82:872878. doi:10.1053/apmr.2001.23838

    • Search Google Scholar
    • Export Citation
  • 27.

    Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:6570.

  • 28.

    Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18:918920. PubMed ID: 15574101

    • Search Google Scholar
    • Export Citation
  • 29.

    Aisbett B, Lerossignol P, McConell GK, Abbiss CR, Snow R. Influence of all-out and fast start on 5-min cycling time trial performance. Med Sci Sports Exerc. 2009;41:19651971. PubMed ID: 19727014 doi:10.1249/MSS.0b013e3181a2aa78

    • Search Google Scholar
    • Export Citation
  • 30.

    Jones AM, Wilkerson DP, Vanhatalo A, Burnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18:615626. PubMed ID: 18067518 doi:10.1111/j.1600-0838.2007.00725.x

    • Search Google Scholar
    • Export Citation
  • 31.

    Margaria R, Mangili F, Cuttica F, Cerretelli P. The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics. 1965;8:4954. doi:10.1080/00140136508930773

    • Search Google Scholar
    • Export Citation
  • 32.

    Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300:R700R707. PubMed ID: 21160059 doi:10.1152/ajpregu.00761.2010

    • Search Google Scholar
    • Export Citation
  • 33.

    Spencer M, Losnegard T, Hallén J, Hopkins WG. Variability and predictability of performance times of elite cross-country skiers. Int J Sports Physiol Perform. 2014;9(1):511. PubMed ID: 23799826 doi:10.1123/ijspp.2012-0382

    • Search Google Scholar
    • Export Citation
  • 34.

    Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists. J Appl Physiol. 1988;64(6):26222630. doi:10.1152/jappl.1988.64.6.2622

    • Search Google Scholar
    • Export Citation
  • 35.

    Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:2563. PubMed ID: 7556353 doi:10.1249/00003677-199500230-00004

    • Search Google Scholar
    • Export Citation
  • 36.

    Oliveira BR, Slama FA, Deslandes AC, Furtado ES, Santos TM. Continuous and high-intensity interval training: which promotes higher pleasure? PLoS ONE. 2013;8:e79965. PubMed ID: 24302993 doi:10.1371/journal.pone.0079965

    • Search Google Scholar
    • Export Citation
  • 37.

    Bailey SJ, Vanhatalo A, DiMenna FJ, Wilkerson DP, Jones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43:457467. PubMed ID: 20689463 doi:10.1249/MSS.0b013e3181ef3dce

    • Search Google Scholar
    • Export Citation
  • 38.

    Thum JS, Parsons G, Whittle T, Astorino TA. High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS ONE. 2017;12(1):e0166299. PubMed ID: 28076352 doi:10.1371/journal.pone.0166299

    • Search Google Scholar
    • Export Citation
  • 39.

    Losnegard T, Myklebust H, Spencer M, Hallén J. Seasonal variations in VO2max, O2-cost, O2-deficit, and performance in elite cross-country skiers. J Strength Cond Res. 2013;27(7):17801790. PubMed ID: 22996025 doi:10.1519/JSC.0b013e31827368f6

    • Search Google Scholar
    • Export Citation
  • 40.

    Fessi MS, Nouira S, Dellal A, Owen A, Elloumi M, Moalla W. Changes of the psychophysical state and feeling of wellness of professional soccer players during pre-season and in-season periods. Res Sports Med. 2016;24(4):375386. PubMed ID: 27574867 doi:10.1080/15438627.2016.1222278

    • Search Google Scholar
    • Export Citation
  • 41.

    Leveritt M, Abernethy PJ. Acute effects of high-intensity endurance exercise on subsequent resistance activity. J Strength Cond Res. 1999;13:4751.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wiewelhove T, Raeder C, Meyer T, Kellmann M, Pfeiffer M, Ferrauti A. Markers for routine assessment of fatigue and recovery in male and female team sport athletes during high-intensity interval training. PLoS ONE. 2015;10(10):e0139801. PubMed ID: 26444557 doi:10.1371/journal.pone.0139801

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4354 1233 118
Full Text Views 108 22 2
PDF Downloads 106 27 2