Increasing Oxygen Uptake in Well-Trained Cross-Country Skiers During Work Intervals With a Fast Start

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute effect of a roller-ski skating session containing work intervals with a fast start followed by decreasing speed (DEC) with a traditional session where the work intervals had a constant speed (similar to the mean speed of DEC; TRAD) on physiological responses, rating of perceived exertion, and leg press peak power. Methods: A total of 11 well-trained cross-country skiers performed DEC and TRAD in a randomized order (5 × 5-min work intervals, 3-min relief). Each 5-minute work interval in the DEC protocol started with 1.5 minutes at 100% of maximal aerobic speed followed by 3.5 minutes at 85% of maximal aerobic speed, whereas the TRAD protocol had a constant speed at 90% of maximal aerobic speed. Results: DEC induced a higher VO2 than TRAD, measured as both peak and average of all work intervals during the session (98.2% [2.1%] vs 95.4% [3.1%] VO2peak, respectively, and 87.6% [1.9%] vs 86.1% [3.2%] VO2peak, respectively) with a lower mean rating of perceived exertion after DEC than TRAD (16.1 [1.0] vs 16.5 [0.7], respectively) (all P < .05). There were no differences between sessions for mean heart rate, blood lactate concentration, or leg press peak power. Conclusion: DEC induced a higher mean VO2 and a lower rating of perceived exertion than TRAD, despite similar mean speed, indicating that DEC can be a good strategy for interval sessions aiming to accumulate more time at a high percentage of VO2peak.

The authors are with the Inland Norway University of Applied Sciences, Lillehammer, Norway.

Rønnestad (bent.ronnestad@inn.no) is corresponding author.
  • 1.

    Holmberg HC. The elite cross-country skier provides unique insights into human exercise physiology. Scand J Med Sci Sport. 2015;25:100–109. PubMed ID: 26589123 doi:10.1111/sms.12601

    • Search Google Scholar
    • Export Citation
  • 2.

    Sandbakk Ø, Hegge AM, Losnegard T, Skattebo Ø, Tønnessen E, Holmberg HC. The physiological capacity of the world’s highest ranked female cross-country skiers. Med Sci Sports Exerc. 2016;48:1091–1100. PubMed ID: 26741124 doi:10.1249/MSS.0000000000000862

    • Search Google Scholar
    • Export Citation
  • 3.

    Sandbakk Ø, Sandbakk SB, Ettema G, Welde B. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J Strength Cond Res. 2013;27:1974–1980. PubMed ID: 23037620 doi:10.1519/JSC.0b013e3182752f08

    • Search Google Scholar
    • Export Citation
  • 4.

    Sandbakk Ø, Holmberg HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017;12:1003–1011. PubMed ID: 28095083 doi:10.1123/ijspp.2016-0749

    • Search Google Scholar
    • Export Citation
  • 5.

    Thevenet D, Tardieu-Berger M, Berthoin S, Prioux J. Influence of recovery mode (passive vs active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol. 2007;99:133–142. PubMed ID: 17115178 doi:10.1007/s00421-006-0327-1

    • Search Google Scholar
    • Export Citation
  • 6.

    Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36:117–132. PubMed ID: 16464121 doi:10.2165/00007256-200636020-00003

    • Search Google Scholar
    • Export Citation
  • 7.

    Turnes T, de Aguiar RA, Cruz RS, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116:161–169. PubMed ID: 26373721 doi:10.1007/s00421-015-3263-0

    • Search Google Scholar
    • Export Citation
  • 8.

    Hill DW, Williams CS, Burt SE. Responses to exercise at 92% and 100% of the velocity associated with VO2max. J Sport Sci Med. 1997;18:325–329. PubMed ID: 9298771 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Billat V, Bernard O, Pinoteau J, Petit B, Koralsztein JP. Time to exhaustion at VO2max and lactate steady state velocity in sub elite long-distance runners. Arch Int Physiol Biochim Biophys. 1994;102(3):215–219. PubMed ID: 8000045

    • Search Google Scholar
    • Export Citation
  • 10.

    Rønnestad BR, Hansen J. Optimizing interval training at power output associated with peak oxygen uptake in well-trained cyclists. J Strength Cond Res. 2016;30(4):999–1006. PubMed ID: 23942167 doi:10.1519/JSC.0b013e3182a73e8a

    • Search Google Scholar
    • Export Citation
  • 11.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43:313–338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Search Google Scholar
    • Export Citation
  • 12.

    Ariyoshi M, Tanaka H, Kanamori K, et al. Influence of running pace upon performance: effects upon oxygen intake, blood lactate, and rating of perceived exertion. Can J Appl Sport Sci. 1979;4:210–213. PubMed ID: 540415

    • Search Google Scholar
    • Export Citation
  • 13.

    Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med Sci Sports Exerc. 2002;34:1041–1047. PubMed ID: 12048335 doi:10.1097/00005768-200206000-00022

    • Search Google Scholar
    • Export Citation
  • 14.

    Billat V, Petot H, Karp JR, Sarre G, Morton RH, Mille-Hamard L. The sustainability of VO2max: effect of decreasing the workload. Eur J Appl Physiol. 2013;113:385–394. PubMed ID: 22752344 doi:10.1007/s00421-012-2424-7

    • Search Google Scholar
    • Export Citation
  • 15.

    Lisboa FD, Salvador AF, Raimundo JA, Pereira KL, de Aguiar RA, Caputo F. Decreasing power output increases aerobic contribution during low-volume severe-intensity intermittent exercise. J Strength Cond Res. 2015;29:2434–2440. PubMed ID: 26308828 doi:10.1519/JSC.0000000000000914

    • Search Google Scholar
    • Export Citation
  • 16.

    Zadow EK, Gordon N, Abbiss CR, Peiffer JJ. Pacing, the missing piece of the puzzle to high-intensity interval training. Int J Sports Med. 2015;36:215–219. PubMed ID: 25415386 doi:10.1055/s-0034-1389973

    • Search Google Scholar
    • Export Citation
  • 17.

    Caputo F, Denadai BS. Exercise mode affects the time to achieve VO2max without influencing maximal exercise time at the intensity associated with VO2max in triathletes. Int J Sports Med. 2006;27:798–803. PubMed ID: 16586327 doi:10.1055/s-2005-872962

    • Search Google Scholar
    • Export Citation
  • 18.

    Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 2000;89:899–907. PubMed ID: 10956332 doi:10.1152/jappl.2000.89.3.899

    • Search Google Scholar
    • Export Citation
  • 19.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Search Google Scholar
    • Export Citation
  • 20.

    Sylta Ø, Tønnessen E, Seiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9(1):100–107. PubMed ID: 24408353 doi:10.1123/ijspp.2013-0298

    • Search Google Scholar
    • Export Citation
  • 21.

    Sandbakk Ø, Holmberg HC, Leirdahl S, Ettema G. Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers. Eur J Appl Physiol. 2010;109:473–481. PubMed ID: 20151149 doi:10.1007/s00421-010-1372-3

    • Search Google Scholar
    • Export Citation
  • 22.

    McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):1523–1546. PubMed ID: 26400696 doi:10.1007/s40279-015-0376-x

    • Search Google Scholar
    • Export Citation
  • 23.

    Losnegard T, Myklebust H, Hallén J. Anaerobic capacity as a determinant of performance in sprint skiing. Med Sci Sports Exerc. 2012;44:673–681. PubMed ID: 21952633 doi:10.1249/MSS.0b013e3182388684

    • Search Google Scholar
    • Export Citation
  • 24.

    Demarie S, Koralsztein JP, Billat V. Time limit and time at VO2max during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40(2):96–102. PubMed ID: 11034428

    • Search Google Scholar
    • Export Citation
  • 25.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 2008;14:377–381.

  • 26.

    Earles DR, Judge JO, Gunnarsson OT. Velocity training induces power-specific adaptations in highly functioning older adults. Arch Phys Med Rehabil. 2000;82:872–878. doi:10.1053/apmr.2001.23838

    • Search Google Scholar
    • Export Citation
  • 27.

    Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

  • 28.

    Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18:918–920. PubMed ID: 15574101

    • Search Google Scholar
    • Export Citation
  • 29.

    Aisbett B, Lerossignol P, McConell GK, Abbiss CR, Snow R. Influence of all-out and fast start on 5-min cycling time trial performance. Med Sci Sports Exerc. 2009;41:1965–1971. PubMed ID: 19727014 doi:10.1249/MSS.0b013e3181a2aa78

    • Search Google Scholar
    • Export Citation
  • 30.

    Jones AM, Wilkerson DP, Vanhatalo A, Burnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18:615–626. PubMed ID: 18067518 doi:10.1111/j.1600-0838.2007.00725.x

    • Search Google Scholar
    • Export Citation
  • 31.

    Margaria R, Mangili F, Cuttica F, Cerretelli P. The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics. 1965;8:49–54. doi:10.1080/00140136508930773

    • Search Google Scholar
    • Export Citation
  • 32.

    Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300:R700–R707. PubMed ID: 21160059 doi:10.1152/ajpregu.00761.2010

    • Search Google Scholar
    • Export Citation
  • 33.

    Spencer M, Losnegard T, Hallén J, Hopkins WG. Variability and predictability of performance times of elite cross-country skiers. Int J Sports Physiol Perform. 2014;9(1):5–11. PubMed ID: 23799826 doi:10.1123/ijspp.2012-0382

    • Search Google Scholar
    • Export Citation
  • 34.

    Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists. J Appl Physiol. 1988;64(6):2622–2630. doi:10.1152/jappl.1988.64.6.2622

    • Search Google Scholar
    • Export Citation
  • 35.

    Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25–63. PubMed ID: 7556353 doi:10.1249/00003677-199500230-00004

    • Search Google Scholar
    • Export Citation
  • 36.

    Oliveira BR, Slama FA, Deslandes AC, Furtado ES, Santos TM. Continuous and high-intensity interval training: which promotes higher pleasure? PLoS ONE. 2013;8:e79965. PubMed ID: 24302993 doi:10.1371/journal.pone.0079965

    • Search Google Scholar
    • Export Citation
  • 37.

    Bailey SJ, Vanhatalo A, DiMenna FJ, Wilkerson DP, Jones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43:457–467. PubMed ID: 20689463 doi:10.1249/MSS.0b013e3181ef3dce

    • Search Google Scholar
    • Export Citation
  • 38.

    Thum JS, Parsons G, Whittle T, Astorino TA. High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS ONE. 2017;12(1):e0166299. PubMed ID: 28076352 doi:10.1371/journal.pone.0166299

    • Search Google Scholar
    • Export Citation
  • 39.

    Losnegard T, Myklebust H, Spencer M, Hallén J. Seasonal variations in VO2max, O2-cost, O2-deficit, and performance in elite cross-country skiers. J Strength Cond Res. 2013;27(7):1780–1790. PubMed ID: 22996025 doi:10.1519/JSC.0b013e31827368f6

    • Search Google Scholar
    • Export Citation
  • 40.

    Fessi MS, Nouira S, Dellal A, Owen A, Elloumi M, Moalla W. Changes of the psychophysical state and feeling of wellness of professional soccer players during pre-season and in-season periods. Res Sports Med. 2016;24(4):375–386. PubMed ID: 27574867 doi:10.1080/15438627.2016.1222278

    • Search Google Scholar
    • Export Citation
  • 41.

    Leveritt M, Abernethy PJ. Acute effects of high-intensity endurance exercise on subsequent resistance activity. J Strength Cond Res. 1999;13:47–51.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wiewelhove T, Raeder C, Meyer T, Kellmann M, Pfeiffer M, Ferrauti A. Markers for routine assessment of fatigue and recovery in male and female team sport athletes during high-intensity interval training. PLoS ONE. 2015;10(10):e0139801. PubMed ID: 26444557 doi:10.1371/journal.pone.0139801

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 493 493 212
Full Text Views 20 20 18
PDF Downloads 14 14 13