The Effects of Cluster-Set and Traditional-Set Postactivation Potentiation Protocols on Vertical Jump Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To compare the effects of 2 postactivation potentiation (PAP) protocols using traditional-set or cluster-set configurations on countermovement jump performance. Methods: Twenty-six male basketball players completed 3 testing sessions separated by 72 hours. On the first session, subjects performed barbell jump squats with progressively heavier loads to determine their individual optimum power load. On the second and third sessions, subjects completed 2 PAP protocols in a randomized order: 3 sets of 6 repetitions of jump squats using optimum power load performed with either a traditional-set (no interrepetition rest) or a cluster-set (20-s rest every 2 repetitions) configuration. After a warm-up, countermovement jump height was measured using a force platform before, 30 seconds, 4 minutes, and 8 minutes after completing the PAP protocols. The following kinetic variables were also analyzed and compared: relative impulse, ground reaction force, eccentric displacement, and vertical leg-spring stiffness. Results: Across both conditions, subjects jumped lower at post 30 seconds by 1.21 cm, and higher in post 4 minutes by 2.21 cm, and in post 8 minutes by 2.60 cm compared with baseline. However, subjects jumped higher in the cluster condition by 0.71 cm (95% confidence interval, 0.37 to 1.05 cm) in post 30 seconds, 1.33 cm (95% confidence interval, 1.02 to 1.65 cm) in post 4 minute, and 1.64 cm (95% confidence interval, 1.41 to 1.88 cm) in post 8 minutes. The superior countermovement jump performance was associated with enhanced kinetic data. Conclusions: Both protocols induced PAP responses in vertical jump performance using jump squats at optimum power load. However, the cluster-set configuration led to superior performance across all time points, likely due to reduced muscular fatigue.

Dello Iacono is with the Dept of Health and Life Sciences, University of the West of Scotland, Glasgow, United Kingdom. Beato is with the School of Science, Technology and Engineering, University of Suffolk, Ipswich, United Kingdom. Halperin is with the School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and with Sylvan Adams Sports Inst, Tel Aviv University, Tel Aviv, Israel.

Dello Iacono (antonio.delloiacono@uws.ac.uk) is corresponding author.
  • 1.

    Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138143. PubMed ID: 12150573 doi:10.1097/00003677-200207000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):15231546. PubMed ID: 26400696 doi:10.1007/s40279-015-0376-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Seitz LB, Haff GG. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016;46(2):231240. doi:10.1007/s40279-015-0415-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2):147166. doi:10.2165/00007256-200939020-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wilson JM, Duncan NM, Marin PJ, et al. Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res. 2013;27(3):854859. PubMed ID: 22580978 doi:10.1519/JSC.0b013e31825c2bdb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    McBride JM, Nimphius S, Erickson TM. The acute effects of heavy-load squats and loaded countermovement jumps on sprint performance. J Strength Cond Res. 2005;19(4):893897. PubMed ID: 16287357

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Dello Iacono A, Martone D, Padulo J. Acute effects of drop-jump protocols on explosive performances of elite handball players. J Strength Cond Res. 2016;30(11):31223133. PubMed ID: 26958786 doi:10.1519/JSC.0000000000001393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Dello Iacono A, Seitz LB. Hip thrust-based PAP effects on sprint performance of soccer players: heavy-loaded versus optimum-power development protocols. J Sports Sci. 2018;36(20):23752382. PubMed ID: 29595081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Dello Iacono A, Padulo J, Seitz LD. Loaded hip thrust-based PAP protocol effects on acceleration and sprint performance of handball players. J Sports Sci. 2018;36(11):12691276. PubMed ID: 28873044 doi:10.1080/02640414.2017.1374657

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kilduff LP, Bevan HR, Kingsley MI, et al. Postactivation potentiation in professional rugby players: optimal recovery. J Strength Cond Res. 2007;21(4):11341138. PubMed ID: 18076243

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Suchomel TJ, Lamont HS, Moir GL. Understanding vertical jump potentiation: a deterministic model. Sports Med. 2016;46(6):809828. doi:10.1007/s40279-015-0466-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Maloney SJ, Turner AN, Fletcher IM. Ballistic exercise as a pre-activation stimulus: a review of the literature and practical applications. Sports Med. 2014;44(10):13471359. PubMed ID: 24943044 doi:10.1007/s40279-014-0214-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Banister EW, Carter JB, Zarkadas PC. Training theory and taper: validation in triathlon athletes. Eur J Appl Physiol Occup Physiol. 1999;79(2):182191. PubMed ID: 10029340 doi:10.1007/s004210050493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Loturco I, Nakamura FY, Tricoli V, et al. Determining the optimum power load in jump squat using the mean propulsive velocity. PLoS ONE. 2015;10(10):e0140102. doi:10.1371/journal.pone.0140102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Soriano MA, Jiménez-Reyes P, Rhea MR, Marín PJ. The optimal load for maximal power production during lower-body resistance exercises: a meta-analysis. Sports Med. 2015;45(8):11911205. PubMed ID: 26063470 doi:10.1007/s40279-015-0341-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Haff GG, Whitley A, McCoy LB, et al. Effects of different set configurations on barbell velocity and displacement during a clean pull. J Strength Cond Res. 2003;17(1):95103. PubMed ID: 12580663

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hardee JP, Triplett NT, Utter AC, Zwetsloot KA, McBride JM. Effect of interrepetition rest on power output in the power clean. J Strength Cond Res. 2012;26(4):883889. PubMed ID: 22228112 doi:10.1519/JSC.0b013e3182474370

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hansen KT, Cronin JB, Newton MJ. The effect of cluster loading on force, velocity, and power during ballistic jump squat training. Int J Sports Physiol Perform. 2011;6(4):455468. PubMed ID: 21934171 doi:10.1123/ijspp.6.4.455

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Oliver JM, Kreutzer A, Jenke SC, Phillips MD, Mitchell JB, Jones MT. Velocity drives greater power observed during back squat using cluster sets. J Strength Cond Res. 2016;30(1):235243. PubMed ID: 26121432 doi:10.1519/JSC.0000000000001023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Moreno SD, Brown LE, Coburn JW, Judelson DA. Effect of cluster sets on plyometric jump power. J Strength Cond Res. 2014;28(9):24242428. PubMed ID: 24942176 doi:10.1519/JSC.0000000000000585

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tufano JJ, Conlon JA, Nimphius S, et al. Cluster sets: permitting greater mechanical stress without decreasing relative velocity. Int J Sports Physiol Perform. 2017;12(4):463469. PubMed ID: 27617387 doi:10.1123/ijspp.2015-0738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Tufano JJ, Conlon JA, Nimphius S, et al. Maintenance of velocity and power with cluster sets during high-volume back squats. Int J Sports Physiol Perform. 2016;11(7):885892. PubMed ID: 26791936 doi:10.1123/ijspp.2015-0602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Boullosa DA, Abreu L, Beltrame LG, Behm DG. The acute effect of different half squat set configurations on jump potentiation. J Strength Cond Res. 2013;27(8):20592066. PubMed ID: 23207892 doi:10.1519/JSC.0b013e31827ddf15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nickerson BS, Mangine GT, Williams TD, Martinez IA. Effect of cluster set warm-up configurations on sprint performance in collegiate male soccer players. Appl Physiol Nutri Metabol. 2018;43(6):625630. doi:10.1139/apnm-2017-0610

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Sanchez-Medina L, Perez C, Gonzalez-Badillo J. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(02):123129. doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Beato M, Stiff A, Coratella G. Effects of postactivation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength [published online ahead of print January 4, 2019]. J Strength Cond Res. PubMed ID: 30615009 doi:10.1519/JSC.0000000000003005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Educ Exerc Sci. 2008;12(4):207218. doi:10.1080/10913670802349766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Comyns TM, Harrison AJ, Hennessy LK. An investigation into the recovery process of a maximum stretch-shortening cycle fatigue protocol on drop and rebound jumps. J Strength Cond Res. 2011;25(8):21772184. PubMed ID: 21572355 doi:10.1519/JSC.0b013e3181e85b6a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Leech NL, Onwuegbuzie AJ. A Call for Greater Use of Nonparametric Statistics; 2002.

  • 30.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. doi:10.2165/00007256-200030010-00001

  • 31.

    Cumming G. The new statistics: why and how. Psychol Sci. 2014;25(1):729. PubMed ID: 24220629 doi:10.1177/0956797613504966

  • 32.

    Dragicevic P. Fair statistical communication in HCI. In Modern Statistical Methods for HCI. Switzerland: Springer; 2016:291330.

  • 33.

    Winter EM. Jumping: power or impulse? Med Sci Sports Exerc. 2005;37(3):523. doi:10.1249/01.MSS.0000155703.50713.26

  • 34.

    Gonzalez-Hernadez JM, Garcia-Ramos A, Capelo-Ramirez F, et al.Mechanical, metabolic, and perceptual acute responses to different set configurations in full squat. [published online ahead of print July 8, 2019]. J Strength Cond Res. 2017. PubMed ID: 28700515 doi:10.1519/JSC.0000000000002117

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Loturco I, Pereira LA, Kobal R, et al. Half-squat or jump squat training under optimum power load conditions to counteract power and speed decrements in Brazilian elite soccer players during the preseason. J Sports Sci. 2015;33(12):12831292. PubMed ID: 25772972 doi:10.1080/02640414.2015.1022574

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Newton RU, Murphy AJ, Humphries BJ, Wilson GJ, Kraemer WJ, Hakkinen K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol. 1997;75(4):333342. PubMed ID: 9134365 doi:10.1007/s004210050169

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Lake J, Lauder M, Smith N, Shorter K. A comparison of ballistic and nonballistic lower-body resistance exercise and the methods used to identify their positive lifting phases. J Appl Biomech. 2012;28(4):431437. PubMed ID: 22085898 doi:10.1123/jab.28.4.431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 873 873 155
Full Text Views 35 35 3
PDF Downloads 23 23 2