Improved 1000-m Running Performance and Pacing Strategy With Caffeine and Placebo: A Balanced Placebo Design Study

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate the placebo effect of caffeine on pacing strategy and performance over 1000-m running time trials using a balanced placebo design. Methods: Eleven well-trained male middle-distance athletes performed seven 1000-m time trials (1 familiarization, 2 baseline, and 4 experimental). Experimental trials consisted of the administration of 4 randomized treatments: informed caffeine/received caffeine, informed caffeine/received placebo, informed placebo/received caffeine, and informed placebo/received placebo. Split times were recorded at 200, 400, 600, 800, and 1000 m, and peak heart rate and rating of perceived exertion were recorded at the completion of the trial. Results: Relative to baseline, participants ran faster during informed caffeine/received caffeine (d = 0.42) and informed caffeine/received placebo (d = 0.43). These changes were associated with an increased pace during the first half of the trial. No differences were shown in pacing or performance between baseline and the informed placebo/received caffeine (d = 0.21) and informed placebo/received placebo (d = 0.10). No differences were reported between treatments for peak heart rate (η2 = .084) and rating of perceived exertion (η2 = .009). Conclusions: The results indicate that the effect of believing to have ingested caffeine improved performance to the same magnitude as actually receiving caffeine. These improvements were associated with an increase in pace during the first half of the time trial.

Hurst is with the School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom. Schipof-Godart is with the Hague University, the Hague, the Netherlands. Hettinga is with Northumbria University, Newcastle upon Tyne, United Kingdom. Roelands is with Vrije Universiteit Brussel, Brussels, Belgium. Beedie is with the University of Kent, Canterbury, United Kingdom.

Hurst (philip.hurst@canterbury.ac.uk) is corresponding author.
  • 1.

    Hurst P, Foad AJ, Coleman DA, Beedie C. Athletes intending to use sports supplements are more likely to respond to a placebo. Med Sci Sports Exerc. 2017;49(9):18771883. doi:10.1249/MSS.0000000000001297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Beedie C, Benedetti F, Barbiani D, et al. Consensus statement on placebo effects in sports and exercise: the need for conceptual clarity, methodological rigour, and the elucidation of neurobiological mechanisms. Eur J Sport Sci. 2018;18(10):13831389. doi:10.1080/17461391.2018.1496144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Beedie C, Foad AJ, Hurst P. Capitalizing on the placebo component of treatments. Curr Sports Med Rep. 2015;14(4):284287. PubMed ID: 26166052 doi:10.1249/JSR.0000000000000172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Foad AJ, Beedie C, Coleman DA. Pharmacological and psychological effects of caffeine ingestion in 40-km cycling performance. Med Sci Sports Exerc. 2008;40(1):158165. PubMed ID: 18091009 doi:10.1249/mss.0b013e3181593e02

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    McClung M, Collins D. “Because I know it will!”: placebo effects of an ergogenic aid on athletic performance. J Sport Exerc Psychol. 2007;29(3):382394. PubMed ID: 17876973 doi:10.1123/jsep.29.3.382

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rohsenow DJ, Marlatt GA. The balanced placebo design: methodological considerations. Addict Behav. 1981;6(2):107122. PubMed ID: 7023202 doi:10.1016/0306-4603(81)90003-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Clark VR, Hopkins WG, Hawley JA, Burke LM. Placebo effect of carbohydrate feedings during a 40-km cycling time trial. Med Sci Sports Exerc. 2000;32(9):16421647. PubMed ID: 10994918 doi:10.1097/00005768-200009000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bellinger PM, Minahan CL. Performance effects of acute beta-alanine induced paresthesia in competitive cyclists. Eur J Sport Sci. 2016;16(1):8895. PubMed ID: 25636080 doi:10.1080/17461391.2015.1005696

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Duncan M. Placebo effects of caffeine on anaerobic performance in moderately trained adults. Serbian J Sports Sci. 2010;4(3):99106.

  • 10.

    Tallis J, Muhammad B, Islam M, Duncan MJ. Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve. 2016;54(3):479486. PubMed ID: 26823128 doi:10.1002/mus.25060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Brazier J, Sinclair J, Bottoms L. The effects of hologram wristbands and placebo on athletic performance. Kineziologija. 2014;46(1):109116.

    • Search Google Scholar
    • Export Citation
  • 12.

    Beedie C, Foad AJ. The placebo effect in sports performance: a brief review. Sports Med. 2009;39(4):313329. PubMed ID: 19317519 doi:10.2165/00007256-200939040-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Frisaldi E, Piedimonte A, Benedetti F. Placebo and nocebo effects: a complex interplay between psychological factors and neurochemical networks. Am J Clin Hypn. 2015;57(3):267284. PubMed ID: 25928679 doi:10.1080/00029157.2014.976785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Foster C, Hendrickson K, Peyer K, et al. Pattern of developing the performance template. Br J Sports Med. 2009;43(10):765769. PubMed ID: 19124526 doi:10.1136/bjsm.2008.054841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jones HS, Williams EL, Bridge CA, et al. Physiological and psychological effects of deception on pacing strategy and performance: a review. Sports Med. 2013;43(12):12431257. PubMed ID: 24002790 doi:10.1007/s40279-013-0094-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Konings MJ, Parkinson J, Zijdewind I, Hettinga FJ. Racing an opponent: alteration of pacing, performance, and muscle-force decline but not rating of perceived exertion. Int J Sports Physiol Perform. 2018;13(3):283289. PubMed ID: 28657853 doi:10.1123/ijspp.2017-0220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Schiphof-Godart L, Roelands B, Hettinga FJ. Drive in sports: how mental fatigue affects endurance performance. Front Psychol. 2018;9:1383. PubMed ID: 30174627 doi:10.3389/fpsyg.2018.01383

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wiles J, Bird S, Hopkins J, Riley M. Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. Br J Sports Med. 1992;26(2):116120. PubMed ID: 1623356 doi:10.1136/bjsm.26.2.116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Irwin C, Desbrow B, Ellis A, O’Keeffe B, Grant G, Leveritt M. Caffeine withdrawal and high-intensity endurance cycling performance. J Sports Sci. 2011;29(5):509515. PubMed ID: 21279864 doi:10.1080/02640414.2010.541480

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Smith JR, Brown KR, Murphy JD, Harms CA. Does menstrual cycle phase affect lung diffusion capacity during exercise? Respir Physiol Neurobiol. 2015;205:99104. PubMed ID: 25447680 doi:10.1016/j.resp.2014.10.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Haugen T, Buchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46(5):641656. PubMed ID: 26660758 doi:10.1007/s40279-015-0446-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(2):175184. doi:10.1007/s40279-014-0257-8

  • 23.

    Graham T, Spriet L. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78(3):867874. PubMed ID: 7775331 doi:10.1152/jappl.1995.78.3.867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Culm-Merdek KE, Von Moltke LL, Harmatz JS, Greenblatt DJ. Fluvoxamine impairs single-dose caffeine clearance without altering caffeine pharmacodynamics. Br J Clin Pharmacol. 2005;60(5):486493. doi:10.1111/j.1365-2125.2005.02467.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31(1):111. PubMed ID: 11219498 doi:10.2165/00007256-200131010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Drust B, Waterhouse J, Atkinson G, Edwards B, Reilly T. Circadian rhythms in sports performance—an update. Chronobiol Int. 2005;22(1):2144. PubMed ID: 15865319 doi:10.1081/CBI-200041039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health. 1990;16(suppl 1):5558. doi:10.5271/sjweh.1815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WG. Speadsheets for analysis of validity and reliability. Sportsci. 2015;19:2642.

  • 29.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 30.

    Pires FO, Anjos CASD, Covolan RJ, et al. Caffeine and placebo improved maximal exercise performance despite unchanged motor cortex activation and greater prefrontal cortex deoxygenation. Front Physiol. 2018;9:1144. PubMed ID: 30246799 doi:10.3389/fphys.2018.01144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Beedie C, Stuart EM, Coleman DA, Foad AJ. Placebo effects of caffeine on cycling performance. Med Sci Sports Exerc. 2006;38(12):21592164. PubMed ID: 17146324 doi:10.1249/01.mss.0000233805.56315.a9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Saunders B, de Oliveira LF, da Silva RP, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27(11):12401247. PubMed ID: 27882605 doi:10.1111/sms.12793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Edwards A, Polman R. Pacing and awareness: brain regulation of physical activity. Sports Med. 2013;43(11):10571064. PubMed ID: 23990402 doi:10.1007/s40279-013-0091-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mora-Rodríguez R, Pallarés JG, López-Gullón JM, López-Samanes Á, Fernández-Elías VE, Ortega JF. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport. 2015;18(3):338342. doi:10.1016/j.jsams.2014.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Pethick J, Winter SL, Burnley M. Caffeine ingestion attenuates fatigue-induced loss of muscle torque complexity. Med Sci Sports Exerc. 2018;50(2):236245. PubMed ID: 28991045 doi:10.1249/MSS.0000000000001441

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N, Wager TD. Dissociable influences of opiates and expectations on pain. J Neurosci. 2012;32(23):80538064. PubMed ID: 22674280 doi:10.1523/JNEUROSCI.0383-12.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Beedie C, Benedetti F, Barbiani D, Camerone E, Lindheimer JB, Roelands B. Are placebo effects in sport a sham, or have we got things under control? Some potential mechanisms and promising methods that might help answer the question. Eur J Sport Sci. In press.

    • Search Google Scholar
    • Export Citation
  • 38.

    Pollo A, Carlino E, Benedetti F. The top-down influence of ergogenic placebos on muscle work and fatigue. Eur J Neurosci. 2008;28(2):379388. PubMed ID: 18702709 doi:10.1111/j.1460-9568.2008.06344.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rossettini G, Andani ME, Dalla Negra F, Testa M, Tinazzi M, Fiorio M. The placebo effect in the motor domain is differently modulated by the external and internal focus of attention. Sci Rep. 2018;8(1):12296. PubMed ID: 30115945 doi:10.1038/s41598-018-30228-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ross R, Gray CM, Gill JM. Effects of an injected placebo on endurance running performance. Med Sci Sports Exerc. 2015;47(8):16721681. PubMed ID: 25412293 doi:10.1249/MSS.0000000000000584

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 539 539 55
Full Text Views 41 41 2
PDF Downloads 25 25 6