Maximal Lactate Steady State Versus the 20-Minute Functional Threshold Power Test in Well-Trained Individuals: “Watts” the Big Deal?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To (1) compare the power output (PO) for both the 20-minute functional threshold power (FTP20) field test and the calculated 95% (FTP95%) with PO at maximal lactate steady state (MLSS) and (2) evaluate the sensitivity of FTP95% and MLSS to training-induced changes. Methods: Eighteen participants (12 males: 37 [6] y and 6 females: 28 [6] y) performed a ramp-incremental cycling test to exhaustion, 2 to 3 constant-load MLSS trials, and an FTP20 test. A total of 10 participants returned to repeat the test series after 7 months of training. Results: The PO at FTP20 and FTP95% was greater than that at MLSS (P = .00), with the PO at MLSS representing 88.5% (4.8%) and 93.1% (5.1%) of FTP and FTP95%, respectively. MLSS was greater at POST compared with PRE training (12 [8] W) (P = .002). No increase was observed in mean PO at FTP20 and FTP95% (P = .75). Conclusions: The results indicate that the PO at FTP95% is different to MLSS, and that changes in the PO at MLSS after training were not reflected by FTP95%. Even when using an adjusted percentage (ie, 88% rather than 95% of FTP20), the large variability in the data is such that it would not be advisable to use this as a representation of MLSS.

Inglis, Iannetta, Passfield, and Murias are with the Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada. Passfield is also with the University of Kent, Chatham Maritime, United Kingdom.

Murias (jmmurias@ucalgary.ca) is corresponding author.
  • 1.

    Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sport Exerc. 2016;48(11):23202334. doi:10.1249/MSS.0000000000000939

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Billat VL, Sirvent P, Py G, Koralsztein J-P, Mercier J. The concept of maximal lactate steady state. Sport Med. 2003;33(6):407426. doi:10.2165/00007256-200333060-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Keir DA, Fontana FY, Robertson TC, et al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sport Exerc. 2015;47(9):19321940. doi:10.1249/MSS.0000000000000613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Allen H, Coggan A. Training and Racing with a Power Meter. Boulder, CO: VeloPress; 2006.

  • 5.

    MacInnis MJ, Thomas ACQ, Phillips SM. The reliability of 4-minute and 20-minute time trials and their relationships to functional threshold power in trained cyclists. Int J Sports Physiol Perform. 2018;14(1):127.

    • Search Google Scholar
    • Export Citation
  • 6.

    Valenzuela PL, Morales JS, Foster C, Lucia A, de la Villa P. Is the functional threshold power (FTP) a valid surrogate of the lactate threshold? Int J Sports Physiol Perform. 2018;13(10):16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Borszcz FK, Tramontin AF, Bossi AH, Carminatti LJ, Costa VP. Functional threshold power in cyclists: validity of the concept and physiological responses. Int J Sports Med. 2018;39(10):737742. PubMed ID: 29801189 doi:10.1055/s-0044-101546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Moritani T, Nagata A, deVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339350. PubMed ID: 7262059 doi:10.1080/00140138108924856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Morgan PT, Black MI, Bailey SJ, Jones AM, Vanhatalo A. Road cycle TT performance: relationship to the power-duration model and association with FTP. J Sports Sci. 2018;37(8):902910. PubMed ID: 30387374 doi:10.1080/02640414.2018.1535772

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Baron B, Noakes TD, Dekerle J, et al. Why does exercise terminate at the maximal lactate steady state intensity? Br J Sports Med. 2008;42:828833. PubMed ID: 18070803 doi:10.1136/bjsm.2007.040444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    De Pauw K, Roelands B, De Geus B, Meeusen R. Guidelines to classify subject groups in sport- science research. Int J Sports Physiol Perform. 2013;8:111122. doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Inglis EC, Iannetta D, Keir DA, Murias JM. Training-induced changes in the RCP, [HHb] BP and MLSS: evidence of equivalence. Int J Sports Physiol Perform. 2019;123. doi:10.1123/ijspp.2019-0046

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Iannetta D, Fontana FY, Maturana M, et al. An equation to predict the maximal lactate steady state from ramp incremental exercise test data in cycling. J Sci Med Sport. 2018;21(12):12741280. PubMed ID: 29803737 doi:10.1016/j.jsams.2018.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Beneke R. Methodological aspects of maximal lactate steady state—implications for performance testing. Eur J Appl Physiol. 2003;89(1):9599. PubMed ID: 12627312 doi:10.1007/s00421-002-0783-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Iannetta D, Inglis EC, Fullerton C, Passfield L, Murias JM. Metabolic and performance-related consequences of exercising at and slightly above MLSS. Scand J Med Sci Sports. 2018;28(12):24812493. PubMed ID: 30120803 doi:10.1111/sms.13280

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mattioni Maturana F, Fontana FY, Pogliaghi S, Passfield L, Murias JM. Critical power: how different protocols and models affect its determination. J Sci Med Sport. 2018;21(7):742747. doi:10.1016/j.jsams.2017.11.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Keir DA, Mattioni Maturana F, Murias JM. When is it appropriate to compare critical power to maximal lactate steady-state? Appl Physiol Nutr Metab. 2018;43(1):9697. doi:10.1139/apnm-2017-0552

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sport Exerc. 2010;42(10):18761890. doi:10.1249/MSS.0b013e3181d9cf7f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bishop D, Jenkins DG, Howard A. The critical power function is dependent on the duration of predictive tests chosen. Int J Sports Med. 1998;19:125129. PubMed ID: 9562222 doi:10.1055/s-2007-971894

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of critical power precisely estimate the maximal metabolic steady-state? Appl Physiol Nutr Metab. 2016;41(11):11971203. PubMed ID: 27819154 doi:10.1139/apnm-2016-0248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins WG. Measures of reliability in sports medicine and science. Sport Sci Rev. 2000;30(1):115.

  • 22.

    Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sport Med. 2001;31(3):211234. doi:10.2165/00007256-200131030-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol Occup Physiol. 1982;49:4557. PubMed ID: 6213407 doi:10.1007/BF00428962

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Denis C, Fouquet R, Poty P, Geyssant A, Lacourt J. Effect of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med. 1982;3:208214. PubMed ID: 7152767 doi:10.1055/s-2008-1026089

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hickson RC, Bomze HA, Holloszy JO. Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol. 1977;42(3):372376. PubMed ID: 838658 doi:10.1152/jappl.1977.42.3.372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Faria EW, Parker DL, Faria IE. The science of cycling factors affecting performance – part 2. Sport Med. 2005;35(4):313337. doi:10.2165/00007256-200535040-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Zavorsky GS, Murias JM, Gow J, et al. Laboratory 20-km cycle time trial reproducibility. Int J Sports Med. 2007;28(9):743748. PubMed ID: 17455116 doi:10.1055/s-2007-964969

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Thomas K, Stone MR, Thompson KG, St Clair Gibson A, Ansley L. Reproducibility of pacing strategy during simulated 20-km cycling time trials in well-trained cyclists. Eur J Appl Physiol. 2012;112(1):223229. PubMed ID: 21533808 doi:10.1007/s00421-011-1974-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Nicolò A, Marcora SM, Sacchetti M. Respiratory frequency is strongly associated with perceived exertion during time trials of different duration. J Sports Sci. 2016;34(13):11991206. doi:10.1080/02640414.2015.1102315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1124 1124 225
Full Text Views 34 34 1
PDF Downloads 21 21 1