Player Session Rating of Perceived Exertion: A More Valid Tool Than Coaches’ Ratings to Monitor Internal Training Load in Elite Youth Female Basketball

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Corrado Lupo
Search for other papers by Corrado Lupo in
Current site
Google Scholar
PubMed
Close
,
Alexandru Nicolae Ungureanu
Search for other papers by Alexandru Nicolae Ungureanu in
Current site
Google Scholar
PubMed
Close
,
Riccardo Frati
Search for other papers by Riccardo Frati in
Current site
Google Scholar
PubMed
Close
,
Matteo Panichi
Search for other papers by Matteo Panichi in
Current site
Google Scholar
PubMed
Close
,
Simone Grillo
Search for other papers by Simone Grillo in
Current site
Google Scholar
PubMed
Close
, and
Paolo Riccardo Brustio
Search for other papers by Paolo Riccardo Brustio in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To monitor elite youth female basketball training to verify whether players’ and coaches’ (3 technical coaches and 1 physical trainer) session rating of perceived exertion (s-RPE) has a relationship with Edwards’ method. Methods: Heart rate of 15 elite youth female basketball players (age 16.7 [0.5] y, height 178 [9] cm, body mass 72 [9] kg, body mass index 22.9 [2.2] kg·m−2) was monitored during 19 team (268 individual) training sessions (102 [15] min). Mixed effect models were applied to evaluate whether s-RPE values were significantly (P ≤ .05) related to Edwards’ data, total session duration, maximal intensity (session duration at 90–100% HRmax), type of training (ie, strength, conditioning, and technique), and whether differences emerged between players’ and coaches’ s-RPE values. Results: The results showed that there is a relationship between s-RPE and Edwards’ methods for the players’ RPE scores (P = .019) but not for those of the trainers. In addition, as expected, both players’ (P = .014) and coaches’ (P = .002) s-RPE scores were influenced by total session duration but not by maximal intensity and type of training. In addition, players’ and coaches’ s-RPE values differed (P < .001)—post hoc differences emerged for conditioning (P = .01) and technique (P < .001) sessions. Conclusions: Elite youth female basketball players are better able to quantify the internal training load of their sessions than their coaches, strengthening the validity of s-RPE as a tool to monitor training in team sports.

Lupo, Ungureanu, and Brustio are with NeuroMuscular Function Research Group, School of Exercise & Sport Sciences (SUISM), Department of Medical Sciences, University of Turin, Turin, Italy. Frati is with the School of Exercise & Sport Sciences (SUISM), Department of Medical Sciences, University of Turin, Turin, Italy. Frati, Panichi, and Grillo are with Italian Basketball National Federation, Rome, Italy. Panichi is with the University of Udine, Udine, Italy.

Lupo (corrado.lupo@unito.it) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ciolac EG, Mantuani SS, Neiva CM, Verardi C, Pessoa-Filho DM, Pimenta L. Rating of perceived exertion as a tool for prescribing and self regulating interval training: a pilot study. Biol Sport. 2015;32(2):103108. PubMed ID: 26028809 doi:10.5604/20831862.1134312

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lupo C, Capranica L, Cortis C, Guidotti F, Bianco A, Tessitore A. Session-RPE for quantifying load of different youth taekwondo training sessions. J Sports Med Phys Fitness. 2017;57(3):189194. PubMed ID: 26796074. doi:10.23736/S0022-4707.16.06021-X

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lupo C, Tessitore A, Gasperi L, Gomez M. Session-RPE for quantifying the load of different youth basketball training sessions. Biol Sport. 2017;1(1):1117. PubMed ID: 28416891 doi:10.5114/biolsport.2017.63381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Lupo C, Capranica L, Tessitore A. The validity of the session-RPE method for quantifying training load in water polo. Int J Sports Physiol Perform. 2014;9(4):656660. PubMed ID: 24231176 doi:10.1123/ijspp.2013-0297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ben Abdelkrim N, El Fazaa S, El Ati J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br J Sports Med. 2007;41(2):6975. PubMed ID: 17138630 doi:10.1136/bjsm.2006.032318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Moreira A, Crewther B, Freitas CG, Arruda AF, Costa EC, Aoki MS. Session RPE and salivary immune-endocrine responses to simulated and official basketball matches in elite young male athletes. J Sports Med Phys Fitness. 2012;52(6):682687. PubMed ID: 23187333

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Moreira A, McGuigan MR, Arruda AF, Freitas CG, Aoki MS. Monitoring internal load parameters during simulated and official basketball matches. J Strength Cond Res. 2012;26(3):861866. PubMed ID: 22289698 doi:10.1519/JSC.0b013e31822645e9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Manzi V, D’Ottavio S, Impellizzeri FM, Chaouachi A, Chamari K, Castagna C. Profile of weekly training load in elite male professional basketball players. J Strength Cond Res. 2010;24(5):13991406. PubMed ID: 20386474 doi:10.1519/JSC.0b013e3181d7552a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Edwards S. The Heart Rate Monitor Book. Sacramento, CA: Fleet Feet Press; 1993.

  • 10.

    Bridge CA, Jones MA, Drust B. Physiological responses and perceived exertion during international Taekwondo competition. Int J Sports Physiol Perform. 2009;4(4):485493. PubMed ID: 20029099 doi:10.1123/ijspp.4.4.485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Casolino E, Cortis C, Lupo C, Chiodo S, Minganti C, Capranica L. Physiological versus psychological evaluation in taekwondo elite athletes. Int J Sports Physiol Perform. 2012;7(4):322331. PubMed ID: 22694946 doi:10.1123/ijspp.7.4.322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Foster C, Heimann KM, Esten PL, Brice G, Porcari JP. Differences in perceptions of training by coaches and athletes. S Afr J Sports Med. 2001;8(2):37.

    • Search Google Scholar
    • Export Citation
  • 13.

    de Andrade Nogueira FC, Nogueira RA, Coimbra DR, Miloski B, Freitas VH, Bara Filho M. Internal training load: perception of volleyball coaches and athletes. Rev Bras Cineantropom Desempenho Hum. 2014;16(6):638647. doi:10.5007/1980-0037.2014v16n6p638

    • Search Google Scholar
    • Export Citation
  • 14.

    Murphy AP, Duffield R, Kellett A, Reid M. Comparison of athlete-coach perceptions of internal and external load markers for elite junior tennis training. Int J Sports Physiol Perform. 2014;9(5):751756. PubMed ID: 24231360 doi:10.1123/ijspp.2013-0364

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Brink MS, Frencken WG, Jordet G, Lemmink KA. Coaches’ and players’ perceptions of training dose: not a perfect match. Int J Sports Physiol Perform. 2014;9(3):497502. PubMed ID: 24235774 doi:10.1123/ijspp.2013-0009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Barroso R, Cardoso RK, do Carmo EC, Tricoli V. Perceived exertion in coaches and young swimmers with different training experience. Int J Sports Physiol Perform. 2014;9(2):212216. PubMed ID: 23630106 doi:10.1123/ijspp.2012-0356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Rabelo FN, Pasquarelli BN, Goncalves B, et al. Monitoring the intended and perceived training load of a professional futsal team over 45 weeks: a case study. J Strength Cond Res. 2016;30(1):134140. PubMed ID: 26200197 doi:10.1519/JSC.0000000000001090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Rodríguez-Marroyo JA, Medina J, García-López J, García-Tormo JV, Foster C. Correspondence between training load executed by volleyball players and the one observed by coaches. J Strength Cond Res. 2014;28(6):15881594. doi:10.1519/JSC.0000000000000324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Vaquera A, Suarez-Iglesias D, Guiu X, Barroso R, Thomas G, Renfree A. Physiological responses to and athlete and coach perceptions of exertion during small-sided basketball games. J Strength Cond Res. 2018;32(10):29492953. PubMed ID: 28759533 doi:10.1519/JSC.0000000000002012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Fox SM, 3rd, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):404432. PubMed ID: 4945367

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 22.

    Foster C, Hector LL, Welsh R, Schrager M, Green MA, Snyder AC. Effects of specific versus cross-training on running performance. Eur J Appl Physiol Occup Physiol. 1995;70(4):367372. PubMed ID: 7649149 doi:10.1007/BF00865035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Lamb KL, Eston RG, Corns D. Reliability of ratings of perceived exertion during progressive treadmill exercise. Br J Sports Med. 1999;33(5):336339. PubMed ID: 10522637 doi:10.1136/bjsm.33.5.336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lamberts RP, Swart J, Noakes TD, Lambert MI. A novel submaximal cycle test to monitor fatigue and predict cycling performance. Br J Sports Med. 2011;45(10):797804. PubMed ID: 19622525 doi:10.1136/bjsm.2009.061325

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2018; https://www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • 27.

    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):48. doi:10.18637/jss.v067.i01

  • 28.

    Lenth R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.2. 2019; https://CRAN.R-project.org/package=emmeans

    • Search Google Scholar
    • Export Citation
  • 29.

    Brenner JS, American Academy of Pediatrics Council on Sports M, Fitness. Overuse injuries, overtraining, and burnout in child and adolescent athletes. Pediatrics. 2007;119(6):12421245. PubMed ID: 17545398 doi:10.1542/peds.2007-0887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3465 821 35
Full Text Views 83 24 3
PDF Downloads 76 21 4