The Effect of 30-Second Sprints During Prolonged Exercise on Gross Efficiency, Electromyography, and Pedaling Technique in Elite Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Background: Cycling competitions are often of long duration and include repeated high-intensity efforts. Purpose: To investigate the effect of repeated maximal sprints during 4 hours of low-intensity cycling on gross efficiency (GE), electromyography patterns, and pedaling technique compared with work-matched low-intensity cycling in elite cyclists. Methods: Twelve elite, male cyclists performed 4 hours of cycling at 50% of maximal oxygen uptake either with 3 sets of 3 × 30-second maximal sprints (E&S) during the first 3 hours or a work-matched cycling without sprints (E) in a randomized order. Oxygen uptake, electromyography, and pedaling technique were recorded throughout the exercises. Results: GE was reduced from start to the end of exercise in both conditions (E&S: 19.0 [0.2] vs 18.1 [0.2], E: 19.1% [0.2%] vs 18.1% [0.2%], both P = .001), with no difference in change between conditions (condition × time interaction, P = .8). Integrated electromyography increased from start to end of exercise in m. vastus lateralis and m. vastus medialis (m. vastus medialis: 9.9 [2.4], m. vastus lateralis: 8.5 [4.0] mV, main effect of time: P < .001 and P = .03, respectively) and E&S increased less than E in m. vastus medialis (mean difference −3.3 [1.5] mV, main effect of condition: P = .03, interaction, P = .06). The mechanical effectiveness only decreased in E&S (E&S: −2.2 [0.7], effect size = 0.24 vs E: −1.3 [0.8] percentage points: P = .04 and P = .8, respectively). The mean power output during each set of 3 × 30-second sprints in E&S did not differ (P = .6). Conclusions: GE decreases as a function of time during 4 hours of low-intensity cycling. However, the inclusion of maximal repeated sprinting does not affect the GE changes, and the ability to sprint is maintained throughout the entire session.

Almquist and Rønnestad are with the Dept of Sport Science, Innland Norway University of Applied Sciences, Lillehammer, Norway. Almquist, Ettema, and Sandbakk are with the Centre for Elite Sports Research, Dept of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway. Hopker is with the School of Sport and Exercise Sciences, Endurance Research Group, University of Kent, Kent, United Kingdom.

Almquist (Nicki.almquist@inn.no) is corresponding author.
  • 1.

    Lucia A, Hoyos J, Chicharro JL. Physiology of professional road cycling. Sports Med. 2001;31(5):325337. PubMed ID: 11347684 doi:10.2165/00007256-200131050-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:2563. PubMed ID: 7556353 doi:10.1249/00003677-199500230-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sanders D, van Erp T, de Koning JJ. Intensity and load characteristics of professional road cycling: differences between men’s and women’s races. Int J Sports Physiol Perform. 2019;14(3):296302. doi:10.1123/ijspp.2018-0190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fernandez-Garcia B, Perez-Landaluce J, Rodriguez-Alonso M, Terrados N. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc. 2000;32(5):10021006. PubMed ID: 10795793 doi:10.1097/00005768-200005000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ronnestad BR, Hansen EA, Raastad T. Strength training improves 5-min all-out performance following 185 min of cycling. Scand J Med Sci Sports. 2011;21(2):250259. PubMed ID: 19903319 doi:10.1111/j.1600-0838.2009.01035.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hopker JG, O’Grady C, Pageaux B. Prolonged constant load cycling exercise is associated with reduced gross efficiency and increased muscle oxygen uptake. Scand J Med Sci Sports. 2017;27(4):408417. PubMed ID: 26993076 doi:10.1111/sms.12673

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R700R707. PubMed ID: 21160059 doi:10.1152/ajpregu.00761.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Groot S, van de Westelaken LH, Noordhof DA, Levels K, de Koning JJ. Recovery of cycling gross efficiency after time-trial exercise. Int J Sports Physiol Perform. 2018;13(8):10281033. PubMed ID: 29466078 doi:10.1123/ijspp.2017-0429

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Noordhof DA, Mulder RC, Malterer KR, Foster C, de Koning JJ. The decline in gross efficiency in relation to cycling time-trial length. Int J Sports Physiol Perform. 2015;10(1):6470. PubMed ID: 24911784 doi:10.1123/ijspp.2014-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev. 1996;24:3571. PubMed ID: 8744246 doi:10.1249/00003677-199600240-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Krustrup P, Secher NH, Relu MU, Hellsten Y, Soderlund K, Bangsbo J. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans. J Physiol. 2008;586(24):60376048. PubMed ID: 18955384 doi:10.1113/jphysiol.2008.158162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hausswirth C, Argentin S, Bieuzen F, Le Meur Y, Couturier A, Brisswalter J. Endurance and strength training effects on physiological and muscular parameters during prolonged cycling. J Electromyogr Kinesiol. 2010;20(2):330339. PubMed ID: 19473854 doi:10.1016/j.jelekin.2009.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ronnestad BR, Hansen J, Hollan I, Ellefsen S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand J Med Sci Sports. 2015;25(1):e89e98. PubMed ID: 24862305 doi:10.1111/sms.12257

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Takaishi T, Sugiura T, Katayama K, et al. Changes in blood volume and oxygenation level in a working muscle during a crank cycle. Med Sci Sports Exerc. 2002;34(3):520528. PubMed ID: 11880818 doi:10.1097/00005768-200203000-00020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hansen EA, Ronnestad BR, Vegge G, Raastad T. Cyclists’ improvement of pedaling efficacy and performance after heavy strength training. Int J Sports Physiol Perform. 2012;7(4):313321. PubMed ID: 23197584 doi:10.1123/ijspp.7.4.313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Korff T, Romer LM, Mayhew I, Martin JC. Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Med Sci Sports Exerc. 2007;39(6):991995. PubMed ID: 17545890 doi:10.1249/mss.0b013e318043a235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Barclay CJ, Woledge RC, Curtin NA. Energy turnover for Ca2+ cycling in skeletal muscle. J Muscle Res Cell Motil. 2007;28(4–5):259274. doi:10.1007/s10974-007-9116-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Walsh B, Howlett RA, Stary CM, Kindig CA, Hogan MC. Measurement of activation energy and oxidative phosphorylation onset kinetics in isolated muscle fibers in the absence of cross-bridge cycling. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1707R1713. PubMed ID: 16424084 doi:10.1152/ajpregu.00687.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Gunnarsson TP, Christensen PM, Thomassen M, Nielsen LR, Bangsbo J. Effect of intensified training on muscle ion kinetics, fatigue development, and repeated short-term performance in endurance-trained cyclists. Am J Physiol Regul Integr Comp Physiol. 2013;305(7):R811R821. PubMed ID: 23883682 doi:10.1152/ajpregu.00467.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Glaister M, Stone MH, Stewart AM, Hughes M, Moir GL. The influence of recovery duration on multiple sprint cycling performance. J Strength Cond Res. 2005;19(4):831837. PubMed ID: 16331865

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Burnley M, Doust JH, Jones AM. Time required for the restoration of normal heavy exercise VO2 kinetics following prior heavy exercise. J Appl Physiol. 2006;101(5):13201327. doi:10.1152/japplphysiol.00475.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Passfield L, Doust JH. Changes in cycling efficiency and performance after endurance exercise. Med Sci Sports Exerc. 2000;32(11):19351941. PubMed ID: 11079525 doi:10.1097/00005768-200011000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ronnestad BR, Kojedal O, Losnegard T, Kvamme B, Raastad T. Effect of heavy strength training on muscle thickness, strength, jump performance, and endurance performance in well-trained Nordic Combined athletes. Eur J Appl Physiol. 2012;112(6):23412352. PubMed ID: 22038144 doi:10.1007/s00421-011-2204-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Peronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16(1):2329. PubMed ID: 1645211

  • 26.

    Noordhof DA, Skiba PF, de Koning JJ. Determining anaerobic capacity in sporting activities. Int J Sports Physiol Perform. 2013;8(5):475482. PubMed ID: 24026759 doi:10.1123/ijspp.8.5.475

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Konrad P. The ABC of EMG. Vol. 1.4. Scottsdale, AZ: Noraxon Inc; 2006.

  • 28.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mullins AK, Annett LE, Drain JR, Kemp JG, Clark RA, Whyte DG. Lower limb kinematics and physiological responses to prolonged load carriage in untrained individuals. Ergonomics. 2015;58(5):770780. PubMed ID: 25428772 doi:10.1080/00140139.2014.984775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopker JG, Coleman DA, Gregson HC, et al. The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance. J Appl Physiol. 2013;115(5):723729. doi:10.1152/japplphysiol.00361.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Vanhatalo A, Black MI, DiMenna FJ, et al. The mechanistic bases of the power-time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;594(15):44074423. PubMed ID: 26940850 doi:10.1113/JP271879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35(9):757777. PubMed ID: 16138786 doi:10.2165/00007256-200535090-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gunnarsson TP, Brandt N, Fiorenza M, Hostrup M, Pilegaard H, Bangsbo J. Inclusion of sprints in moderate intensity continuous training leads to muscle oxidative adaptations in trained individuals. Physiol Rep. 2019;7(4):e13976. PubMed ID: 30793541 doi:10.14814/phy2.13976

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sanderson DJ, Black A. The effect of prolonged cycling on pedal forces. J Sports Sci. 2003;21(3):191199. PubMed ID: 12703848 doi:10.1080/0264041031000071010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ettema G, Loras HW. Efficiency in cycling: a review. Eur J Appl Physiol. 2009;106(1):114. PubMed ID: 19229554 doi:10.1007/s00421-009-1008-7

All Time Past Year Past 30 Days
Abstract Views 475 475 48
Full Text Views 33 33 1
PDF Downloads 17 17 1