Individualizing Training in Swimming: Evidence for Utilizing the Critical Speed and Critical Stroke Rate Concepts

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To monitor physiological, technical, and performance responses to individualized high-intensity interval training (HIIT) prescribed using the critical speed (CS) and critical stroke rate (CSR) concepts in swimmers completing a reduced training volume program (≤30 km·wk−1) for 15 weeks. Methods: Over the 15-week period, 12 highly trained swimmers (age 16 [1] y, height 179 [8] cm, weight 66 [8] kg) completed four 3-minute all-out tests to determine CS and the finite capacity to work above CS (D′), and four 200-m tests at CS to establish a CSR estimate. Combining CS and D′, 2 HIIT sessions designed as 5 × 3-minute intervals depleting 60% of D′ and 3 × 3.5-minute intervals depleting 80% of D′ were prescribed once per week, respectively. An additional HIIT session was prescribed using CS and CSR as 10 × 150 m or 200 m at CS with 2 cycles per minute lower stroke rate than the CSR estimate. Additional monitored variables included peak speed, average speed for 150 seconds (speed150s) and 180 seconds (speed180s), competition performance and stroke length (SL), stroke count (SC), and stroke index (SI) adopted at CS. Results: At the end of the intervention, swimmers demonstrated faster CS (mean change ± 90% confidence limits: +5.4 ± 1.6%), speed150s (+2.5 ± 0.9%), speed180s (+3.0 ± 0.9%), and higher stroke rate (+6.4 ± 3.0%) and stroke index (+4.2 ± 3.6%). D′ was reduced (−25.2 ± 7.5%), whereas peak speed, SL, and SC changed only trivially. The change in the swimmers’ personal best times in the first and second main event was −1.2 ± 1.3% and −1.6 ± 0.9%, respectively. Conclusion: HIIT prescribed based on the CS and CSR concepts was associated with improvements in several physiological, technical, and performance parameters in highly trained swimmers while utilizing time- and resource-efficient approach. This was achieved despite a ≥25% reduction in training volume.

Piatrikova, Willsmer, Gonzalez, and Williams are with the Dept for Health, University of Bath, Bath, United Kingdom. Sousa is with the Research Centre for Sports, Exercise and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; and the University Inst of Maia, ISMAI, Maia, Portugal.

Piatrikova (e.piatrikova@bath.ac.uk) is corresponding author.
  • 1.

    Barbosa TM, Fernandes RJ, Keskinen KL, Vilas-Boas JP. The influence of stroke mechanics into energy cost of elite swimmers. Eur J Appl Physiol. 2008;103:139149. PubMed ID: 18214521 doi:10.1007/s00421-008-0676-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nugent FJ, Comyns TM, Warrington GD. Quality versus quantity debate in swimming: perceptions and training practices of expert swimming coaches. J Hum Kinet. 2017;57:147158. PubMed ID: 28713467 doi:10.1515/hukin-2017-0056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Nugent FJ, Comyns TM, Burrows E, Warrington GD. Effects of low-volume, high-intensity training on performance in competitive swimmers: a systematic review. J Strength Cond Res. 2017;31:837847. PubMed ID: 27465628 doi:10.1519/JSC.0000000000001583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Clark IE, West BM, Reynolds SK, Murray SR, Pettitt RW. Applying the critical velocity model for an off-season interval training program. J Strength Cond Res. 2013;27:33353341. PubMed ID: 23478481 doi:10.1519/JSC.0b013e31828f9d87

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vanhatalo A, Doust JH, Burnley M. A 3-min all-out cycling test is sensitive to a change in critical power. Med Sci Sports Exerc. 2008;40:16931699. PubMed ID: 18685519 doi:10.1249/MSS.0b013e318177871a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Courtright SP, Williams JL, Clark IE, Pettitt RW, Dicks ND. Monitoring interval-training responses for swimming using the 3-min all-out exercise test. Int J Exerc Sci. 2016;9:545553.

    • Search Google Scholar
    • Export Citation
  • 7.

    Piatrikova E, Sousa AC, Gonzalez JT, Williams S. Validity and reliability of the 3-minute all-out test in national and international competitive swimmers. Int J Sports Physiol Perform. 2018;13:11901198. PubMed ID: 29651887 doi:10.1123/ijspp.2018-0018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Dekerle J. The use of critical velocity in swimming: a place for critical stroke rate? Port J Sport Sci. 2006;6:201205.

  • 9.

    Franken M, Diefenthaeler F, More FC, Silveira RP, de Souza Castro FA. Critical stroke rate as a parameter for evaluation in swimming. Motriz-revista De Educacao Fisica. 2013;19:724729. doi:10.1590/S1980-65742013000400009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Barden JM, Kell RT. Relationships between stroke parameters and critical swimming speed in a sprint interval training set. J Sports Sci. 2009;27:227235. PubMed ID: 19153860 doi:10.1080/02640410802475205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Smith DJ, Norris SR, Hogg JM. Performance evaluation of swimmers: scientific tools. Sports Med. 2002;32:539554. PubMed ID: 12096928 doi:10.2165/00007256-200232090-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pettitt RW. Applying the critical speed concept to racing strategy and interval training prescription. Int J Sports Physiol Perform. 2016;11:842847. PubMed ID: 27197057 doi:10.1123/ijspp.2016-0001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Alberty MR, Potdevin FP, Dekerle J, Pelayo PP, Sidney MC. Effect of stroke rate reduction on swimming technique during paced exercise. J Strength Cond Res. 2011;25:392397. PubMed ID: 20224452 doi:10.1519/JSC.0b013e3181b94a51

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bailey SJ, Vanhatalo A, Wilkerson DP, DiMenna FJ, Jones AM. Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe intensity exercise tolerance. J Appl Physiol. 2009;107:17431756. PubMed ID: 19797685 doi:10.1152/japplphysiol.00810.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SR, Ward SA. Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol. 2010;108:866874. PubMed ID: 20093659 doi:10.1152/japplphysiol.91425.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1:5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

  • 17.

    Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31:472485. PubMed ID: 10188754 doi:10.1097/00005768-199903000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Stewart AM, Hopkins WG. Consistency of swimming performance within and between competitions. Med Sci Sports Exerc. 2000;32:9971001. PubMed ID: 10795792 doi:10.1097/00005768-200005000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mitchell LJG, Pyne DB, Saunders PU, Rattray B. Reliability and validity of a modified 3-minute all-out swimming test in elite swimmers. Eur J Sport Sci. 2018;18:307314. PubMed ID: 29251174 doi:10.1080/17461391.2017.1413138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Faude O, Meyer T, Scharhag J, Weins F, Urhausen A, Kindermann W. Volume vs intensity in the training of competitive swimmers. Int J Sports Med. 2008;29:906912. PubMed ID: 18418808 doi:10.1055/s-2008-1038377

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Nugent FJ, Comyns TM, Nevill A, Warrington GD. The effects of low-volume, high-intensity training on performance parameters in competitive youth swimmers. Int J Sports Physiol Perform. 2019;14:203208. PubMed ID: 30039991 doi:10.1123/ijspp.2018-0110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43:313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sousa AC, Vilas-Boas JP, Fernandes RJ, Figueiredo P. VO2 at maximal and supramaximal intensities: lessons to high-intensity interval training in swimming. Int J Sports Physiol Perform. 2017;12:872877. PubMed ID: 27918660 doi:10.1123/ijspp.2016-0475

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Machado MV, Júnior OA, Marques AC, Colantonio E, Cyrino ES, De Mello MT. Effect of 12 weeks of training on critical velocity and maximal lactate steady state in swimmers. Eur J Sport Sci. 2011;11:165170. doi:10.1080/17461391.2010.499973

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Santhiago V, da Silva ASR, Papoti M, Gobatto CA. Responses of hematological parameters and aerobic performance of elite men and women swimmers during a 14-week training program. J Strength Cond Res. 2009;23:10971105. PubMed ID: 19528852 doi:10.1519/JSC.0b013e318194e088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Anderson ME, Hopkins WG, Roberts AD, Pyne DB. Monitoring seasonal and long-term changes in test performance in elite swimmers. Eur J Sport Sci. 2006;6:145154. doi:10.1080/17461390500529574

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Jenkins DG, Quigley BM. The influence of high intensity exercise training on the Wlim–Tlim relationship. Med Sci Sports Exerc. 1993;25:275282. PubMed ID: 8450733

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Costa MJ, Bragada JA, Marinho DA, Silva AJ, Barbosa TM. Longitudinal interventions in elite swimming: a systematic review based on energetics, biomechanics, and performance. J Strength Cond Res. 2012;26:20062016. PubMed ID: 22531620 doi:10.1519/JSC.0b013e318257807f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Termin B, Pendergast DR. Training using the stroke frequency-velocity relationship to combine biomechanical and metabolic paradigms. J Swim Res. 2000;14:917.

    • Search Google Scholar
    • Export Citation
  • 30.

    Costa MJ, Marinho DA, Bragada JA, Silva AJ, Barbosa TM. Stability of elite freestyle performance from childhood to adulthood. J Sports Sci. 2011;29:11831189. PubMed ID: 21777055 doi:10.1080/02640414.2011.587196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1031 1031 130
Full Text Views 55 55 2
PDF Downloads 31 31 1