Increased Oxidative Stress in Injured and Ill Elite International Olympic Rowers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Background: Identifying strategies that reduce the risk of illness and injury is an objective of sports science and medicine teams. No studies have examined the relationship between oxidative stress (OS) and illness or injury in international athletes undergoing periods of intensified training and competition. Purpose: The authors aimed to identify relationships between illness, injury, and OS. Methods: A longitudinal, observational study of elite male rowers (n = 10) was conducted over 18 weeks, leading into World Championships. Following a recovery day and a 12-hour fast, hydroperoxides (free oxygen radicals test) and total antioxidant capacity (free oxygen radicals defense) were measured in venous blood, with the ratio calculated as the oxidative stress index (OSI). At all study time points, athletes were independently dichotomized as ill or not ill, injured or not injured. OS data were compared between groups using independent t tests. A Cox proportional hazard model was used to assess the association of OS with injury and illness while adjusting for age and body mass index. Results: Free oxygen radicals defense was lower (P < .02) and OSI was higher (P < .001) with illness than without illness. Free oxygen radicals test and OSI were higher with injury than without injury (P < .001). A 0.5 mmol·L−1 increase in free oxygen radicals defense was associated with a 30.6% illness risk reduction (95% confidence interval, 7%–48%, P = .014), whereas 0.5 unit increase in OSI was related to a 11.3% increased illness risk (95% confidence interval, 1%–23%, P = .036). Conclusions: OS is increased in injured and ill athletes. Monitoring OS may be advantageous in assessing recovery from and in reducing injury and illness risk given the association.

Lewis, Pedlar, and Burden are with the Faculty of Sport, Health and Applied Science, St Mary’s University, Twickenham, London, United Kingdom. Lewis, Turner, Homer, and Burden are with the English Institute of Sport, United Kingdom. Simpkin is with the School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Galway, Ireland. Moseley, Turner, and Redgrave are with British Rowing Ltd, Hammersmith, London, United Kingdom. Pedlar is also with the Div of Surgery and Interventional Science, University College London, London, United Kingdom.

Lewis (Nathan.lewis@eis2win.co.uk) is corresponding author.
  • 1.

    Raysmith BP, Drew MK. Performance success or failure is influenced by weeks lost to injury and illness in elite Australian track and field athletes: a 5-year prospective study. J Sci Med Sport. 2016;19(10):778783. PubMed ID: 26839047 doi:10.1016/j.jsams.2015.12.515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Jones CM, Griffiths PC, Mellalieu SD. Training load and fatigue marker associations with injury and illness: a systematic review of longitudinal studies. Sports Med. 2016;47(5):943974. PubMed ID: 27677917 doi:10.1007/s40279-016-0619-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lewis NA, Collins D, Pedlar CR, Rogers JP. Can clinicians and scientists explain and prevent unexplained underperformance syndrome in elite athletes: an interdisciplinary perspective and 2016 update. BMJ Open Sport Exerc Med. 2015;1(1):e000063. PubMed ID: 27900140 doi:10.1136/bmjsem-2015-000063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8(9–10):18651879. PubMed ID: 16987039 doi:10.1089/ars.2006.8.1865

  • 5.

    Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28(3):309317. PubMed ID: 20077275 doi:10.1080/02640410903473844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lewis NA, Redgrave A, Homer M, et al. Alterations in redox homeostasis during recovery from unexplained underperformance syndrome in an elite international rower. Int J Sports Physiol Perform. 2018;13(1):107111. PubMed ID: 28422588 doi:10.1123/ijspp.2016-0777

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Knez WL, Jenkins DG, Coombes JS. The effect of an increased training volume on oxidative stress. Int J Sports Med. 2014;35(1):813. PubMed ID: 23839729

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Margonis K, Fatouros IG, Jamurtas AZ, et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med. 2007;43(6):901910. PubMed ID: 17697935 doi:10.1016/j.freeradbiomed.2007.05.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schippinger G, Fankhauser F, Abuja PM, et al. Competitive and seasonal oxidative stress in elite alpine ski racers. Scand J Med Sci Sports. 2008;19(2):206212. PubMed ID: 18266792 doi:10.1111/j.1600-0838.2007.00763.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lewis NA, Howatson G, Morton K, Hill J, Pedlar CR. Alterations in redox homeostasis in the elite endurance athlete. Sports Med. 2015;45(3):379409. PubMed ID: 25319354 doi:10.1007/s40279-014-0276-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wilson F, Gissane C, Gormley J, Simms C. A 12-month prospective cohort study of injury in international rowers. Br J Sports Med. 2010;44(3):207214. PubMed ID: 18718978 doi:10.1136/bjsm.2008.048561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Soligard T, Steffen K, Palmer D, et al. Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: a prospective study of 11274 athletes from 207 countries. Br J Sports Med. 2017;51(17):12651271. PubMed ID: 28756389 doi:10.1136/bjsports-2017-097956

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Svendsen IS, Taylor IM, Tønnessen E, Bahr R, Gleeson M. Training-related and competition-related risk factors for respiratory tract and gastrointestinal infections in elite cross-country skiers. Br J Sports Med. 2016;50(13):809815. PubMed ID: 26941278 doi:10.1136/bjsports-2015-095398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Drew M, Vlahovich N, Hughes D, et al. Prevalence of illness, poor mental health and sleep quality and low energy availability prior to the 2016 Summer Olympic Games. Br J Sports Med. 2018;52(1):4753. PubMed ID: 29056598 doi:10.1136/bjsports-2017-098208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lewis NA, Newell J, Burden R, Howatson G, Pedlar CR. Critical difference and biological variation in biomarkers of oxidative stress and nutritional status in athletes. PLoS ONE. 2016;11(3):e0149927. PubMed ID: 26930475 doi:10.1371/journal.pone.0149927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Catterson P, Moore B, Hodgson A, Lewis NA, Newell J, Pedlar CR. A case study of two premiership footballers with sickle cell trait using novel tests of redox homeostasis. Br J Sports Med. 2014;48(7):577. doi:10.1136/bjsports-2014-093494.47

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Lewis NA, Towey C, Bruinvels G, Howatson G, Pedlar CR. Effects of exercise on alterations in redox homeostasis in elite male and female endurance athletes using a clinical point-of-care test. Appl Physiol Nutr Metab. 2016;41(10):10261032. PubMed ID: 27625070 doi:10.1139/apnm-2016-0208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kyparos A, Vrabas IS, Nikolaidis MG, Riganas CS, Kouretas D. Increased oxidative stress blood markers in well-trained rowers following two thousand-meter rowing ergometer race. J Strength Cond Res. 2009;23(5):14181426. PubMed ID: 19620924 doi:10.1519/JSC.0b013e3181a3cb97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sterne J, Smith GD. Sifting the evidence—what’s wrong with significance tests? Phys Ther. 2001;81(8):14641469. PubMed ID: 28206639 doi:10.1093/ptj/81.8.1464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Jammes Y, Steinberg JG, Delliaux S. Chronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise of plasma oxidant/antioxidant status and heat shock proteins. J Intern Med. 2012;272(1):7484. PubMed ID: 22112145 doi:10.1111/j.1365-2796.2011.02488.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Palazzetti S, Richard M-J, Favier A, Margaritis I. Overloaded training increases exercise-induced oxidative stress and damage. Can J Appl Physiol. 2003;28(4):588604. PubMed ID: 12904636 doi:10.1139/h03-045.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schwellnus M, Soligard T, Alonso JM, et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med. 2016;50(17):10431052. PubMed ID: 27535991 doi:10.1136/bjsports-2016-096572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Koivisto AE, Olsen T, Paur I, et al. Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: a randomized controlled trial. PLoS ONE. 2019;14(6):e0217895. PubMed ID: 31194785 doi:10.1371/journal.pone.0217895

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nantz MP, Rowe CA, Nieves C Jr, Percival SS. Immunity and antioxidant capacity in humans is enhanced by consumption of a dried, encapsulated fruit and vegetable juice concentrate. J Nutr. 2006;136(10):26062610. PubMed ID: 16988134 doi:10.1093/jn/136.10.2606

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lamprecht M, Oettl K, Schwaberger G, Hofmann P, Greilberger JF. Several indicators of oxidative stress, immunity, and illness improved in trained men consuming an encapsulated juice powder concentrate for 28 weeks. J Nutr. 2007;137(2):27372741. PubMed ID: 18029492 doi:10.1093/jn/137.12.2737

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pialoux V, Brugniaux JV, Rock E, et al. Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp. Eur J Nutr. 2010;49(5):285292. PubMed ID: 19943078 doi:10.1007/s00394-009-0085-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Aicale R, Tarantino D, Maffulli N. Overuse injuries in sport: a comprehensive overview. J Orthop Surg Res. 2018;13(1):309. PubMed ID: 30518382 doi:10.1186/s13018-018-1017-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Margaritelis NV, Cobley JN, Paschalis V, et al. Principles for integrating reactive species into in vivo biological processes: examples from exercise physiology. Cell Signal. 2016;28(4):256271. PubMed ID: 26721187 doi:10.1016/j.cellsig.2015.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 320 320 43
Full Text Views 18 18 0
PDF Downloads 11 11 0