The Effects of Daily Cold-Water Recovery and Postexercise Hot-Water Immersion on Training-Load Tolerance During 5 Days of Heat-Based Training

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To examine the effects of daily cold- and hot-water recovery on training load (TL) during 5 days of heat-based training. Methods: Eight men completed 5 days of cycle training for 60 minutes (50% peak power output) in 4 different conditions in a block counter-balanced-order design. Three conditions were completed in the heat (35°C) and 1 in a thermoneutral environment (24°C; CON). Each day after cycling, participants completed 20 minutes of seated rest (CON and heat training [HT]) or cold- (14°C; HTCWI) or hot-water (39°C; HTHWI) immersion. Heart rate, rectal temperature, and rating of perceived exertion (RPE) were collected during cycling. Session-RPE was collected 10 minutes after recovery for the determination of session-RPE TL. Data were analyzed using hierarchical regression in a Bayesian framework; Cohen d was calculated, and for session-RPE TL, the probability that d > 0.5 was also computed. Results: There was evidence that session-RPE TL was increased in HTCWI (d = 2.90) and HTHWI (d = 2.38) compared with HT. The probabilities that d > 0.5 were .99 and .96, respectively. The higher session-RPE TL observed in HTCWI coincided with a greater cardiovascular (d = 2.29) and thermoregulatory (d = 2.68) response during cycling than in HT. This result was not observed for HTHWI. Conclusion: These findings suggest that cold-water recovery may negatively affect TL during 5 days of heat-based training, hot-water recovery could increase session-RPE TL, and the session-RPE method can detect environmental temperature-mediated increases in TL in the context of this study.

Borg, Stewart, Osborne, and Minett are with the Inst of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia. Borg is with The Hopkins Centre: Research for Rehabilitation and Resilience, Menzies Health Inst Queensland, Griffith University, Brisbane, QLD, Australia. Drovandi is with the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers in Big Data, Big Models and New Insights, Brisbane, QLD, Australia; and the School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia. Costello is with Extreme Environments Laboratory, Dept of Sport and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom. Stanley is with Performance Services, South Australian Sports Inst, Adelaide, SA, Australia; and the School of Health Sciences, University of South Australia, Adelaide, SA, Australia.

Borg (david.borg@griffith.edu.au) is corresponding author.
  • 1.

    Tyler CJ, Reeve T, Hodges GJ, Cheung SS. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):16991724. PubMed ID: 27106556 doi:10.1007/s40279-016-0538-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Daanen HA, Racinais S, Périard JD. Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 2018;48(2):409430. PubMed ID: 29129022 doi:10.1007/s40279-017-0808-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chalmers S, Esterman A, Eston R, Bowering KJ, Norton K. Short-term heat acclimation training improves physical performance: a systematic review, and exploration of physiological adaptations and application for team sports. Sports Med. 2014;44(7):971988. PubMed ID: 24817609 doi:10.1007/s40279-014-0178-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Costello JT, Rendell RA, Furber M, et al. Effects of acute or chronic heat exposure, exercise and dehydration on plasma cortisol, IL-6 and CRP levels in trained males. Cytokine. 2018;110:277283. PubMed ID: 29402724 doi:10.1016/j.cyto.2018.01.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(2):139147. doi:10.1007/s40279-014-0253-z

  • 6.

    Schmit C, Duffield R, Hausswirth C, Brisswalter J, Le Meur Y. Optimizing heat acclimation for endurance athletes: high versus low-intensity training. Int J Sports Physiol Perform. 2018;13(6):816823. PubMed ID: 28872380 doi:10.1123/ijspp.2017-0007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Zurawlew MJ, Walsh NP, Fortes MB, Potter C. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand J Med Sci Sports. 2016;26(7):745754. PubMed ID: 26661992 doi:10.1111/sms.12638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Taylor NA. Human heat adaptation. Compr Physiol. 2014;4(1):325365. PubMed ID: 24692142

  • 9.

    Yeargin SW, Casa DJ, McClung JM, Knight JC. Body cooling between two bouts of exercise in the heat enhances subsequent performance. J Strength Cond Res. 2006;20(2):383389. PubMed ID: 16686568

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46(8):10951109. PubMed ID: 26888646 doi:10.1007/s40279-016-0483-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat. Scand J Med Sci Sports. 2014;24(4):656666. PubMed ID: 23458430 doi:10.1111/sms.12060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pointon M, Duffield R, Cannon J, Marino FE. Cold water immersion recovery following intermittent-sprint exercise in the heat. Eur J Appl Physiol. 2012;112(7):24832494. PubMed ID: 22057508 doi:10.1007/s00421-011-2218-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Buchheit M, Peiffer J, Abbiss C, Laursen P. Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol Heart Circ Physiol. 2009;296(2):H421H427. PubMed ID: 19074671 doi:10.1152/ajpheart.01017.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Halson SL, Quod MJ, Martin DT, Gardner AS, Ebert TR, Laursen PB. Physiological responses to cold water immersion following cycling in the heat. Int J Sports Physiol Perform. 2008;3(3):331346. PubMed ID: 19211945 doi:10.1123/ijspp.3.3.331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Minett GM, Costello JT. Specificity and context in post-exercise recovery: it is not a one-size-fits-all approach. Front Physiol. 2015;6:130. PubMed ID: 25964762 doi:10.3389/fphys.2015.00130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    McLean BD, Coutts AJ, Kelly V, McGuigan MR, Cormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5(3):367383. PubMed ID: 20861526 doi:10.1123/ijspp.5.3.367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 19.

    Young AJ, Sawka MN, Epstein Y, DeCristofano B, Pandolf KB. Cooling different body surfaces during upper and lower body exercise. J Appl Physiol. 1987;63(3):12181223. doi:10.1152/jappl.1987.63.3.1218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    International Organisation for Standardisation, ISO 9886. Ergonomics–Evaluation of Thermal Strain by Physiological Measurements. Geneva, Switzerland: International Organization for Standardization; 2004.

    • Search Google Scholar
    • Export Citation
  • 22.

    Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of cold water immersion on repeated 1-km cycling performance in the heat. J Sci Med Sport. 2010;13(1):112116. PubMed ID: 18948061 doi:10.1016/j.jsams.2008.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Liu F, Kong Y. Zoib: an R package for bayesian inference for beta regression and zero/one inflated beta regression. RJ. 2015;7(2):3451. doi:10.32614/RJ-2015-019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Plummer M (2018). rjags: Bayesian Graphical Models using MCMC. R package version 4-8. https://CRAN.R-project.org/package=rjags

  • 25.

    Su Y-S, Yajima M (2015). R2jags: Using R to Run 'JAGS'. R package version 0.5-7. Package ‘R2jags’. https://CRAN.R-project.org/package=R2jags.

    • Search Google Scholar
    • Export Citation
  • 26.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 27.

    Mengersen KL, Drovandi CC, Robert CP, Pyne DB, Gore CJ. Bayesian estimation of small effects in exercise and sports science. PLoS One. 2016;11(4):e0147311. PubMed ID: 27073897 doi:10.1371/journal.pone.0147311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Skein M, Wingfield G, Gale R, Washington TL, Minett GM. Sleep quantity and quality during consecutive day heat training with the inclusion of cold-water immersion recovery. J Therm Biol. 2018;74:6370. PubMed ID: 29801652 doi:10.1016/j.jtherbio.2018.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Brazaitis M, Skurvydas A. Heat acclimation does not reduce the impact of hyperthermia on central fatigue. Eur J Appl Physiol. 2010;109(4):771778. PubMed ID: 20221772 doi:10.1007/s00421-010-1429-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Buguet A, Gati R, Soubiran G, et al. Seasonal changes in circadian rhythms of body temperatures in humans living in a dry tropical climate. Eur J Appl Physiol Occup Physiol. 1988;58(3):334339. PubMed ID: 3220076 doi:10.1007/BF00417272

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 420 420 29
Full Text Views 25 25 2
PDF Downloads 15 15 1