Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To characterize, for the first time, the mechanical properties of treadmill surfaces along with a practical interpretation of their influence on physiological and perceived demands during endurance running compared with other widely used surfaces such as asphalt and tartan tracks. Methods: Ten experienced male endurance runners performed a 40-minute running bout at a preferred constant speed on 3 different surfaces (after a randomized, counterbalanced order with a 7-d interval between trials): asphalt, tartan, or treadmill. Shock absorption, vertical deformation, and energy restitution were measured for the 3 surfaces. Intensity (based on heart rate data) and rating of perceived exertion were monitored. Results: The values of shock absorption averaged 0.0% (asphalt), 37.4% (tartan), and 71.3% (treadmill), while those of vertical deformation and energy restitution averaged 0.3, 2.2, and 6.5 mm and 90.8%, 62.6%, and 37.0%, respectively. Running intensity (as determined by heart rate data) was higher overall on the treadmill than tartan but not asphalt running. Except for the first 10 minutes, all mean rating of perceived exertion values were significantly higher in asphalt and treadmill than in tartan. No significant differences were identified between treadmill and asphalt. Conclusions: The considerably higher shock absorption of the treadmill than the tartan surface leads to a reduction in the amount of energy returned to the athlete, which in turn increases physiological stress and rating of perceived exertion during endurance running.

Colino, Garcia-Unanue, and Gallardo are with IGOID Research Group, University of Castilla-La Mancha, Toledo, Spain. Foster is with the Dept of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI, USA. Lucia and Felipe are with the School of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.

Felipe (Joseluis.felipe@universidadeuropea.es) is corresponding author.
  • 1.

    Baroud G, Nigg B, Stefanyshyn D. Energy storage and return in sport surfaces. Sports Eng. 1999;2(3):173180. doi:10.1046/j.1460-2687.1999.00031.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    McMahon TA, Greene PR. The influence of track compliance on running. J Biomech. 1979;12(12):893904. PubMed ID: 528547 doi:10.1016/0021-9290(79)90057-5

  • 3.

    Schrier NM, Wannop JW, Lewinson RT, Worobets J, Stefanyshyn D. Shoe traction and surface compliance affect performance of soccer-related movements. Footwear Sci. 2014;6(2):6980. doi:10.1080/19424280.2014.886302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hackney J, Brummel S, Jungblut K, Edge C. The effect of sprung (suspended) floors on leg stiffness during grand jete landings in ballet. J Dance Med Sci. 2011;15(3):128133. PubMed ID: 22040759

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Moritz CT, Greene SM, Farley CT. Neuromuscular changes for hopping on a range of damped surfaces. J Appl Physiol. 2004;96(5):19962004. PubMed ID: 14688034 doi:10.1152/japplphysiol.00983.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bigelow EM, Elvin NG, Elvin AA, Arnoczky SP. Peak impact accelerations during track and treadmill running. J Appl Biomech. 2013;29(5):639644. PubMed ID: 23182887 doi:10.1123/jab.29.5.639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Dixon SJ, Collop AC, Batt ME. Surface effects on ground reaction forces and lower extremity kinematics in running. Med Sci Sports Exerc. 2000;32(11):19191926. PubMed ID: 11079523 doi:10.1097/00005768-200011000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fellin RE, Manal K, Davis IS. Comparison of lower extremity kinematic curves during overground and treadmill running. J Appl Biomech. 2010;26(4):407414. PubMed ID: 21245500 doi:10.1123/jab.26.4.407

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nigg BM, De Boer RW, Fisher V. A kinematic comparison of overground and treadmill running. Med Sci Sports Exerc. 1995;27(1):98105. PubMed ID: 7898346

  • 10.

    Riley PO, Dicharry J, Franz J, Della Croce U, Wilder RP, Kerrigan DC. A kinematics and kinetic comparison of overground and treadmill running. Med Sci Sports Exerc. 2008;40(6):10931100. PubMed ID: 18460996 doi:10.1249/MSS.0b013e3181677530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Di Michele R, Di Renzo AM, Ammazzalorso S, Merni F. Comparison of physiological responses to an incremental running test on treadmill, natural grass, and synthetic turf in young soccer players. J Strength Cond Res. 2009;23(3):939945. PubMed ID: 19387382 doi:10.1519/JSC.0b013e3181a07b6e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Sánchez-Sánchez J, García-Unanue J, Felipe JL, et al. Physical and physiological responses of amateur football players on third-generation artificial turf systems during simulated game situations. J Strength Cond Res. 2016;30(11):31653177. doi:10.1519/JSC.0000000000001415

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sanchez-Sanchez J, Garcia-Unanue J, Jimenez-Reyes P, et al. Influence of the mechanical properties of third-generation artificial turf systems on soccer players’ physiological and physical performance and their perceptions. PLoS One. 2014;9(10):e111368. PubMed ID: 25354188 doi:10.1371/journal.pone.0111368

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sassi A, Stefanescu A, Menaspa P, Bosio A, Riggio M, Rampinini E. The cost of running on natural grass and artificial turf surfaces. J Strength Cond Res. 2011;25(3):606611. PubMed ID: 20647952 doi:10.1519/JSC.0b013e3181c7baf9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Nigg BM, Yeadon MR. Biomechanical aspects of playing surfaces. J Sports Sci. 1987;5(2):117145. PubMed ID: 3326948 doi:10.1080/02640418708729771

  • 16.

    Butler RJ, Crowell HP 3rd, Davis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511517. doi:10.1016/S0268-0033(03)00071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Farhang B, Araghi FR, Bahmani A, Moztarzadeh F, Shafieian M. Landing impact analysis of sport surfaces using three-dimensional finite element model. J Sports Eng Tech. 2016;230(3):180185.

    • Search Google Scholar
    • Export Citation
  • 18.

    IAAF. IAAF Track and Runway Synthetic Surface Testing Specifications. Monaco Cedex: IAAF; 2016.

  • 19.

    EN 957-6:2010+A1:2014. Stationary training equipment—part 6: treadmills, additional specific safety requirements and test methods. 2014.

    • Export Citation
  • 20.

    EN 14808:2005. Surface for sports areas—determination of shock absorption. 2005.

    • Export Citation
  • 21.

    EN 14809:2005. Surface for sports areas—determination of vertical deformation. 2005.

    • Export Citation
  • 22.

    FIFA. FIFA Quality Programme for Artificial Turf—Handbook of Test Methods. Zürich, Switzerland: Fédération Internationale de Football Association (FIFA); 2015.

    • Search Google Scholar
    • Export Citation
  • 23.

    Colino E, Sánchez-Sánchez J, García-Unanue J, et al. Validity and reliability of two standard test devices in assessing mechanical properties of different sport surfaces. Polymer Test. 2017;62:6167. doi:10.1016/j.polymertesting.2017.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Delextrat A, Kraiem S. Heart-rate responses by playing position during ball drills in basketball. Int J Sports Physiol Perform. 2013;8(4):410418. PubMed ID: 23237782 doi:10.1123/ijspp.8.4.410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 26.

    Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14(4):321327. PubMed ID: 8887211 doi:10.1080/02640419608727717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr HM. Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol. 2002;92(2):469478. PubMed ID: 11796653 doi:10.1152/japplphysiol.01164.2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Milani TL, Hennig EM, Riehle HJ. A comparison of locomotor characteristics during treadmill and overground running. In G DeGroot,AP Hollander, PA Huijing, GJ Van Ingen Schenau (Eds.), Biomechanics XI-B. Amsterdam, The Netherlands: Free University Press; 1988:655659.

    • Search Google Scholar
    • Export Citation
  • 29.

    Frishberg BA. An analysis of overground and treadmill sprinting. Med Sci Sports Exerc. 1983;15(6):478485. PubMed ID: 6656556 doi:10.1249/00005768-198315060-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Zamparo P, Perini R, Orizio C, Sacher M, Ferretti G. The energy cost of walking or running on sand. Eur J Appl Physiol Occup Physiol. 1992;65(2):183187. PubMed ID: 1327762 doi:10.1007/BF00705078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 377 377 33
Full Text Views 23 23 0
PDF Downloads 18 18 0