Insights for Blood Flow Restriction and Hypoxia in Leg Versus Arm Submaximal Exercise

Click name to view affiliation

Sarah J. Willis
Search for other papers by Sarah J. Willis in
Current site
Google Scholar
PubMed
Close
,
Grégoire P. Millet
Search for other papers by Grégoire P. Millet in
Current site
Google Scholar
PubMed
Close
, and
Fabio Borrani
Search for other papers by Fabio Borrani in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To assess tissue oxygenation, along with metabolic and physiological responses during blood flow restriction (BFR, bilateral vascular occlusion) and systemic hypoxia conditions during submaximal leg- versus arm-cycling exercise. Methods: In both legs and arms, 4 randomized sessions were performed (normoxia 400 m, fraction of inspired oxygen [FIO2] 20.9% and normobaric hypoxia 3800 m, FIO2 13.1% [0.1%]; combined with BFR at 0% and 45% of resting pulse elimination pressure). During each session, a single 6-minute steady-state submaximal exercise was performed to measure physiological changes and oxygenation (near-infrared spectroscopy) of the muscle tissue in both the vastus lateralis (legs) and biceps brachii (arms). Results: Total hemoglobin concentration ([tHb]) was 65% higher (P < .001) in arms versus legs, suggesting that arms had a greater blood perfusion capacity than legs. Furthermore, there were greater changes in tissue blood volume [tHb] during BFR compared with control conditions (P = .017, F = 5.45). The arms elicited 7% lower tissue saturation (P < .001) and were thus more sensitive to the hypoxia-induced reduction in oxygen supply than legs, no matter the condition. This indicates that legs and arms may elicit different regulatory hemodynamic mechanisms (ie, greater blood flow in arms) for limiting the decreased oxygen delivery during exercise with altered arterial oxygen content. Conclusions: The combination of BFR and/or hypoxia led to increased [tHb] in both limbs likely due to greater vascular resistance; further, arms were more responsive than legs. This possibly influences the maintenance of oxygen delivery and enhances perfusion pressure, suggesting greater vascular reactivity in arms than in legs.

Millet and Borrani contributed equally to this work. The authors are with the Inst of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.

Willis (sarah.willis@unil.ch) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Casey DP, Joyner MJ. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol. 2012;590(24):63216326. PubMed ID: 22988134 doi:10.1113/jphysiol.2012.242396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Delp MD, Laughlin MH. Regulation of skeletal muscle perfusion during exercise. Acta Physiol Scand. 1998;162(3):411419. PubMed ID: 9578387 doi:10.1046/j.1365-201X.1998.0324e.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Corvino RB, Rossiter HB, Loch T, Martins JC, Caputo F. Physiological responses to interval endurance exercise at different levels of blood flow restriction. Eur J Appl Physiol. 2017;117(1):3952. PubMed ID: 27826654 doi:10.1007/s00421-016-3497-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Willis SJ, Alvarez L, Borrani F, Millet GP. Oxygenation time course and neuromuscular fatigue during repeated cycling sprints with bilateral blood flow restriction. Physiol Rep. 2018;6(19):e13872. PubMed ID: 30295004 doi:10.14814/phy2.13872

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Willis SJ, Alvarez L, Millet GP, Borrani F. Changes in muscle and cerebral deoxygenation and perfusion during repeated sprints in hypoxia to exhaustion. Front Physiol. 2017;8:846. PubMed ID: 29163193 doi:10.3389/fphys.2017.00846

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Faiss R, Leger B, Vesin JM, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8(2):e56522. PubMed ID: 23437154 doi:10.1371/journal.pone.0056522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Faiss R, Willis S, Born DP, et al. Repeated double-poling sprint training in hypoxia by competitive cross-country skiers. Med Sci Sports Exerc. 2015;47(4):809817. doi:10.1249/MSS.0000000000000464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Saltin B, Kiens B, Savard G, Pedersen PK. Role of hemoglobin and capillarization for oxygen delivery and extraction in muscular exercise. Acta Physiol Scand Suppl. 1986;556:2132. PubMed ID: 3471054

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Newcomer SC, Leuenberger UA, Hogeman CS, Handly BD, Proctor DN. Different vasodilator responses of human arms and legs. J Physiol. 2004;556(Pt 3):10011011. PubMed ID: 14990681 doi:10.1113/jphysiol.2003.059717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Calbet JA, Holmberg HC, Rosdahl H, van Hall G, Jensen-Urstad M, Saltin B. Why do arms extract less oxygen than legs during exercise? Am J Physiol Regul Integr Comp Physiol. 2005;289(5):R1448R1458. PubMed ID: 15919729 doi:10.1152/ajpregu.00824.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Abe T, Fujita S, Nakajima T, et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. J Sports Sci Med. 2010;9(3):452458. PubMed ID: 24149640

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Clarkson MJ, Conway L, Warmington SA. Blood flow restriction walking and physical function in older adults: a randomized control trial. J Sci Med Sport. 2017;20(12):10411046. PubMed ID: 28483555 doi:10.1016/j.jsams.2017.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Conceicao MS, Junior EMM, Telles GD, et al. Augmented anabolic responses after 8-wk cycling with blood flow restriction. Med Sci Sports Exerc. 2019;51(1):8493. PubMed ID: 30113523 doi:10.1249/MSS.0000000000001755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):18761890. PubMed ID: 20195180 doi:10.1249/MSS.0b013e3181d9cf7f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Willis SJ, Borrani F, Millet GP. Leg vs arm cycling repeated sprints with blood flow restriction and systemic hypoxia. Eur J Appl Physiol. 2019;119(8):18191828.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription. 9th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2014.

  • 17.

    Physiology CSfE. PAR-Q & YOU. 2002.

  • 18.

    Gualano B, Ugrinowitsch C, Neves M Jr, et al. Vascular occlusion training for inclusion body myositis: a novel therapeutic approach. J Vis Exp. 2010;40:1894.

    • Search Google Scholar
    • Export Citation
  • 19.

    Barstow TJ. CORP: Understanding near-infrared spectroscopy (NIRS) and its application to skeletal muscle research. J Appl Physiol. 2019;126(5):13601376. doi:10.1152/japplphysiol.00166.2018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lucero AA, Addae G, Lawrence W, et al. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy. Exp Physiol. 2018;103(1):90100. PubMed ID: 29034529 doi:10.1113/EP086537

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rodriguez RF, Townsend NE, Aughey RJ, Billaut F. Influence of averaging method on muscle deoxygenation interpretation during repeated-sprint exercise. Scand J Med Sci Sports. 2018;28(11):22632271. PubMed ID: 29883534 doi:10.1111/sms.13238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. 2017. https://CRAN.R-project.org/package=nlme. Accessed Aug 2017.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lenth RV. Least-squares means: the R Package lsmeans. J Stat Softw. 2016;69(1):33. doi:10.18637/jss.v069.i01

  • 24.

    Van Beekvelt MC, Colier WN, Wevers RA, Van Engelen BG. Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. J Appl Physiol. 2001;90(2):511519. doi:10.1152/jappl.2001.90.2.511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Geraskin D, Boeth H, Kohl-Bareis M. Optical measurement of adipose tissue thickness and comparison with ultrasound, magnetic resonance imging, and callipers. J Biomed Opt. 2009;14(4):044017. PubMed ID: 19725728 doi:10.1117/1.3184425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lin L, Niwayama M, Shiga T, Kudo N, Takahashi M, Yamamoto K. Influence of a fat on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation. Front Med Biol Eng. 2000;10(1):4358. PubMed ID: 10898475 doi:10.1163/15685570052061531

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    van Beekvelt MC, Borghuis MS, van Engelen BG, Wevers RA, Colier WN. Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci. 2001;101(1):2128. doi:10.1042/cs1010021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports. 2011;21(6):E231E241. PubMed ID: 21385216 doi:10.1111/j.1600-0838.2010.01260.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8183 831 64
Full Text Views 973 30 1
PDF Downloads 989 24 3