Vertical Versus Horizontal Resisted Sprint Training Applied to Young Soccer Players: Effects on Physical Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To analyze and compare the effects of 4 different resisted sprint training (RST) modalities on youth soccer players’ performance after 8 weeks of training. Methods: Forty-eight youth soccer players were first randomly assigned to 4 groups and only then completed 8 weeks of RST: horizontal resisted sprint, vertical resisted sprint (VRS), combined resisted sprint, and unresisted sprint. Performance in horizontal and vertical jumps, sprint, and change of direction (COD) ability were assessed 1 week before and after the training intervention. Magnitude-based inference analysis was performed for calculating within-group pre–post differences. In addition, an analysis of covariance test was performed for between-group comparison, using the pretest values as covariates. After that, the analysis of covariance P values and the effect statistic were transformed to magnitude-based inference. Results: Within-group outcomes showed that all resisted training modalities experienced improvements in sprint (small to moderate) and COD (small to large) performance. Moreover, all groups, except unresisted sprint, enhanced the horizontal jump performance. However, only VRS improved on vertical jump. Between-group comparison outcomes revealed that only VRS improved the sprint time compared with horizontal resisted sprint (moderate) and COD performance compared with all groups (moderate to large). In addition, VRS enhanced the countermovement jump performance (small to large) compared with the other groups. Conclusions: Independent of the orientation of the resistance applied, RST is an effective training method for improving sprinting and COD performance. Nevertheless, VRS may promote greater improvements on sprint and COD ability and have a positive additional effect on countermovement jump performance and the reduction of COD deficit.

Carlos-Vivas, Freitas, Marín-Cascales, and Alcaraz are with the UCAM Research Center for High Performance Sport, Catholic University of Murcia, Murcia, Spain. Perez-Gomez is with Health, Economy, Motricity and Education Research Group, Faculty of Sport Sciences, University of Extremadura, Caceres, Spain. Eriksrud is with the Dept of Physical Performance, Norwegian School of Sports of Sciences, Oslo, Norway. Alcaraz is also with the Faculty of Sport Sciences, UCAM, Catholic University of Murcia, Murcia, Spain.

Alcaraz (palcaraz@ucam.edu) is corresponding author.
  • 1.

    Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625631. doi:10.1080/02640414.2012.665940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Arnason A, Sigurdsson SB, Gudmundsson A, Holme I, Engebretsen L, Bahr R. Physical fitness, injuries, and team performance in soccer. Med Sci Sports Exerc. 2004;36(2):278285. PubMed ID: 14767251 doi:10.1249/01.MSS.0000113478.92945.CA

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Haugen TA, Tonnessen E, Seiler S. Anaerobic performance testing of professional soccer players 1995–2010. Int J Sports Physiol Perform. 2013;8(2):148156. PubMed ID: 22868347 doi:10.1123/ijspp.8.2.148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Markovic G, Dizdar D, Jukic I, Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res. 2004;18(3):551555. PubMed ID: 15320660

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brughelli M, Cronin J, Levin G, Chaouachi A. Understanding change of direction ability in sport. Sports Med. 2008;38(12):10451063. PubMed ID: 19026020 doi:10.2165/00007256-200838120-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):19911999. PubMed ID: 11053354 doi:10.1152/jappl.2000.89.5.1991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Salaj S, Markovic G. Specificity of jumping, sprinting, and quick change-of-direction motor abilities. J Strength Cond Res. 2011;25(5):12491255. PubMed ID: 21240031 doi:10.1519/JSC.0b013e3181da77df

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sale D, MacDougall D. Specificity in strength training: a review for the coach and athlete. Can J Appl Sports Sci. 1981;6(2):8792.

  • 9.

    Alcaraz PE, Carlos-Vivas J, Oponjuru BO, Martínez-Rodríguez A. The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis. Sports Med. 2018;48(9):21432165. PubMed ID: 29926369 doi:10.1007/s40279-018-0947-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Alcaraz PE, Palao JM, Elvira JL, Linthorne NP. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. J Strength Cond Res. 2008;22(3):890897. PubMed ID: 18438225 doi:10.1519/JSC.0b013e31816611ea

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Carlos-Vivas J, Marín-Cascales E, Freitas TT, Perez-Gomez J, Alcaraz PE. Force-velocity-power profiling during weighted vest sprinting in soccer. Int J Sports Physiol Perform. 2019;14(6):747756. doi:10.1123/ijspp.2018-0490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cronin J, Hansen K, Kawamori N, Mcnair P. Effects of weighted vests and sled towing on sprint kinematics. Sports Biomech. 2008;7(2):160172. PubMed ID: 18610770 doi:10.1080/14763140701841381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):14191449. PubMed ID: 26838985 doi:10.1007/s40279-016-0486-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dello Iacono A, Martone D, Milic M, Padulo J. Vertical- vs horizontal-oriented drop jump training: chronic effects on explosive performances of elite handball players. J Strength Cond Res. 2017;31(4):921931. PubMed ID: 27398920 doi:10.1519/JSC.0000000000001555

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Loturco I, Contreras B, Kobal R, et al. Vertically and horizontally directed muscle power exercises: relationships with top-level sprint performance. PLoS One. 2018;13(7):e0201475. PubMed ID: 30048538 doi:10.1371/journal.pone.0201475

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Arcos AL, Yanci J, Mendiguchia J, Salinero JJ, Brughelli M, Castagna C. Short-term training effects of vertically and horizontally oriented exercises on neuromuscular performance in professional soccer players. Int J Sports Physiol Perform. 2014;9(3):480488. PubMed ID: 23579053 doi:10.1123/ijspp.2013-0063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Morin J-B, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour J-R. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):39213930. PubMed ID: 22422028 doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gil S, Barroso R, Crivoi do Carmo E, et al. Effects of resisted sprint training on sprinting ability and change of direction speed in professional soccer players. J Sports Sci. 2018;36(17):19231929. doi:10.1080/02640414.2018.1426346

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    McMorrow BJ, Ditroilo M, Egan B. Effect of heavy resisted sled sprint training during the competitive season on sprint and change-of-direction performance in professional soccer players. Int J Sports Physiol Perform. 2019;14(8):10661073. PubMed ID: 30702366 doi:10.1123/ijspp.2018-0592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Rodríguez-Osorio D, Gonzalo-Skok O, Pareja-Blanco F. Effects of resisted sprint with changes of direction training through several relative loads on physical performance in soccer players. Int J Sports Physiol Perform. 2019;14(8):10221028. doi:10.1123/ijspp.2018-0702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rodriguez-Marroyo JA, Antoñan C. Validity of the session rating of perceived exertion for monitoring exercise demands in youth soccer players. Int J Sports Physiol Perform. 2015;10(3):404407. PubMed ID: 25202917 doi:10.1123/ijspp.2014-0058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    van der Kruk E, van der Helm F, Veeger H, Schwab A. Power in sports: a literature review on the application, assumptions, and terminology of mechanical power in sport research. J Biomech. 2018;79:114. PubMed ID: 30213646 doi:10.1016/j.jbiomech.2018.08.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience. 2007;11:1621.

    • Search Google Scholar
    • Export Citation
  • 27.

    Suarez-Arrones L, Arenas C, López G, Requena B, Terrill O, Mendez-Villanueva A. Positional differences in match running performance and physical collisions in men rugby sevens. Int J Sports Physiol Perform. 2014;9(2):316323. PubMed ID: 23881362 doi:10.1123/ijspp.2013-0069

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583594. PubMed ID: 25640466 doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Loturco I, Pereira LA, Abad CCC, et al. Vertical and horizontal jump tests are strongly associated with competitive performance in 100-m dash events. J Strength Cond Res. 2015;29(7):19661971. PubMed ID: 25627643 doi:10.1519/JSC.0000000000000849

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Haugen TA, Tønnessen E, Hisdal J, Seiler S. The role and development of sprinting speed in soccer. Int J Sports Physiol Perform. 2014;9(3):432441. PubMed ID: 23982902 doi:10.1123/ijspp.2013-0121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nagahara R, Mizutani M, Matsuo A, Kanehisa H, Fukunaga T. Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. J Appl Biomech. 2018;34(2):104110. doi:10.1123/jab.2016-0356

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 718 718 155
Full Text Views 29 29 2
PDF Downloads 20 20 2