Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

The growing prevalence and popularity of interval training necessitate additional guidelines in regard to maximal levels of time and intensity. Purpose: To correlate salivary hormones and time in varying heart-rate (HR) zones. The hypothesis was that chronic exercise durations >9% of total exercise time in the >90% maximum HR zone would lead to decreased variation in salivary cortisol concentration after exercise in a 2-bout high-intensity protocol compared with less or more time in this zone. Methods: A total of 35 healthy adults who regularly exercised for an average of 8 hours per week recorded their HR during every training session for 3 weeks. Later, they completed an experimental day composed of two 30-minute high-intensity interval sessions separated by 4 hours of nonactive recovery. The authors collected saliva samples before, immediately following, and 30 minutes after each exercise session to assess changes in cortisol concentrations. Results: There was a correlation between weekly time training at an intensity >90% maximum HR and the variables associated with overtraining. Salivary cortisol concentration fluctuated less in the participants who exercised in this extreme zone for >40 minutes per week (P < .001). Conclusion: Based on the current study data, for individuals who regularly exercise, 4% to 9% total training time above 90% maximum HR is the ideal duration to maximize fitness and minimize symptoms related to overreaching.

Gottschall and Porter are with The Pennsylvania State University, University Park, PA. Davis is with Penn State Health Milton S. Hershey Medical Center, Hershey, PA. Hastings is with Auckland University of Technology, Auckland, New Zealand.

Gottschall (email@jingerfitness.com) is corresponding author.
  • 1.

    Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):13341359. PubMed ID: 21694556 doi:10.1249/MSS.0b013e318213fefb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51(6):494503. PubMed ID: 27797726 doi:10.1136/bjsports-2015-095841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Keating S, Jonhson N, Mielke G, Coombes J. A systematic review and meta-analysis of interval versus moderate-intensity continuous training on body adiposity. Obes Rev. 2017;18(8):943964. PubMed ID: 28513103 doi:10.1111/obr.12536

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jelleyman C, Yates T, O’Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942961. PubMed ID: 26481101 doi:10.1111/obr.12317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):12271234. PubMed ID: 24144531 doi:10.1136/bjsports-2013-092576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489509. PubMed ID: 22587821 doi:10.2165/11630910-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vella CA, Taylor K, Drummer D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur J Sport Sci. 2017;17(9):12031211. PubMed ID: 28792851 doi:10.1080/17461391.2017.1359679

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Martinez N, Kilpatrick MW, Salomon K, Jung ME, Little JP. Affective and enjoyment responses to high-intensity interval training in overweight-to-obese and insufficiently active adults. J Sport Exerc Psychol. 2015;37(2):138149. PubMed ID: 25996105 doi:10.1123/jsep.2014-0212

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kreher JB, Schwartz JB. Overtraining syndrome: a practical guide. Sports Health. 2012;4(2):128138. PubMed ID: 23016079 doi:10.1177/1941738111434406

  • 11.

    Matos NF, Winsley RJ, Williams CA. Prevalence of nonfunctional overreaching/overtraining in young English athletes. Med Sci Sports Exerc. 2011;43(7):12871294. PubMed ID: 21131861 doi:10.1249/MSS.0b013e318207f87b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gatti R, De Palo EF. An update: salivary hormones and physical exercise. Scand J Med Sci Sports. 2011;21(2):157169. PubMed ID: 21129038 doi:10.1111/j.1600-0838.2010.01252.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cadegiani FA, Kater CE. Hormonal aspects of overtraining syndrome: a systematic review. BMC Sports Sci Med Rehabil. 2017;9:14. PubMed ID: 28785411 doi:10.1186/s13102-017-0079-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hough J, Corney R, Kouris A, Gleeson M. Salivary cortisol and testosterone responses to high-intensity cycling before and after an 11-day intensified training period. J Sports Sci. 2013;31(14):16141623. PubMed ID: 23710973 doi:10.1080/02640414.2013.792952

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Meeusen R, Piacentini MF, Busschaert B, Buyse L, De Schutter G, Stray-Gundersen J. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over) training status. Eur J Appl Physiol. 2004;91(2–3):140146. PubMed ID: 15015001 doi:10.1007/s00421-003-0940-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Castagna C, Impellizzeri FM, Chaouachi A, Bordon C, Manzi V. Effect of training intensity distribution on aerobic fitness variables in elite soccer players: a case study. J Strength Cond Res. 2011;25(1):6671. PubMed ID: 21150673 doi:10.1519/JSC.0b013e3181fef3d3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart-rate variability and training-intensity distribution in elite rowers. Int J Sports Physiol Perform. 2014;9(6):10261032. PubMed ID: 24700160 doi:10.1123/ijspp.2013-0497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sanders D, Myers T, Akubat I. Training-intensity distribution in road cyclists: objective versus subjective measures. Int J Sports Physiol Perform. 2017;12(9):12321237. PubMed ID: 28253026 doi:10.1123/ijspp.2016-0523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Seiler S. What is best practice for training intensity and duration distribution. Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gabbett T. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2018;50(5):273280. doi:10.1136/bjsports-2015-095788

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Gabbett TJ, Ullah S. Relationship between running loads and soft-tissue injury in elite team sport athletes. J Strength Cond Res. 2012;26(4):953960. PubMed ID: 22323001 doi:10.1519/JSC.0b013e3182302023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Owen AL, Forsyth JJ, Wong DP, Dellal A, Connelly SP, Chamari K. Heart rate-based training intensity and its impact on injury incidence among elite-level professional soccer players. J Strength Cond Res. 2015;29(6):17051712. PubMed ID: 26010801 doi:10.1519/JSC.0000000000000810

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Frontiers Physiol. 2015;6:295.

  • 24.

    Budgett R, Newsholme E, Lehmann M, et al. Redefining the overtraining syndrome as the unexplained underperformance syndrome. Br J Sports Med. 2000;34(1):6768. PubMed ID: 10690455 doi:10.1136/bjsm.34.1.67

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gastmann U, Lehmann MJ. Overtraining and the BCAA hypothesis. Med Sci Sports Exerc. 1998;30(7):11731178. PubMed ID: 9662692 doi:10.1097/00005768-199807000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hill EE, Zack E, Battaglini C, Viru M, Viru A, Hackney AC. Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Investig. 2008;31(7):587591. doi:10.1007/BF03345606

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lehmann M, Schnee W, Scheu R, Stockhausen W, Bachl N. Decreased nocturnal catecholamine excretion: parameter for an overtraining syndrome in athletes? Int J Sports Med. 1992;13(3):236242. PubMed ID: 1601559 doi:10.1055/s-2007-1021260

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186205. PubMed ID: 23247672 doi:10.1249/MSS.0b013e318279a10a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Snyder AC, Kuipers H, Cheng B, Servais R, Fransen E. Overtraining following intensified training with normal muscle glycogen. Med Sci Sports Exerc. 1995;27(7):10631070. PubMed ID: 7564974 doi:10.1249/00005768-199507000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ten Haaf T, van Staveren S, Oudenhoven E, et al. Prediction of functional overreaching from subjective fatigue and readiness to train after only 3 days of cycling. Int J Sports Physiol Perform. 2017;12(suppl 2):S287S294. PubMed ID: 27834554 doi:10.1123/ijspp.2016-0404

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Thornton H, Duthie G, Pitchford N, Delaney J, Benton D, Dascombe B. Effects of a two-week high intensity training camp on sleep activity of professional rugby league athletes. Int J Sports Physiol Perform. 2016;12(7):928933. PubMed ID: 27918662 doi:10.1123/ijspp.2016-0414

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kolling S, Wiewelhove T, Raeder C, et al. Sleep monitoring of a six-day macrocycle in strength and high-intensity training. Eur J Sport Sci. 2016;16(5):507515. PubMed ID: 26062597 doi:10.1080/17461391.2015.1041062

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 470 470 116
Full Text Views 42 42 6
PDF Downloads 32 32 5