Maximal Fully Tethered Swim Performance in Para Swimmers With Physical Impairment

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

The assessment of swimming propulsion should be a cornerstone of Paralympic swimming classification. However, current methods do not objectively account for this component. Purpose: To evaluate the swimming propulsion of swimmers with and without physical impairment using a 30-second maximal fully tethered freestyle swim test. Methods: Tethered forces were recorded during maximal fully tethered swimming in 80 competitive swimmers with (n = 70) and without (n = 10) physical impairment. The relationships between absolute and normalized tether forces and maximal freestyle swim speed were established using general additive models. Results: Para swimmers with physical impairment had lower absolute and normalized tether forces than able-bodied swimmers, and there were moderate positive correlations found between tether forces and sport class (τ = .52–.55, P < .001). There was a nonlinear relationship between tether force and maximal freestyle swim speed in the participant cohort (adjusted R2 = .78–.80, P < .001). Para swimmers with limb deficiency showed stronger relationships between tether force and maximal freestyle swim speed (adjusted R2 = .78–.82, P < .001) than did Para swimmers with hypertonia (adjusted R2 = .54–.73, P < .001) and impaired muscle power (adjusted R2 = .61–.70, P < .001). Conclusions: Physical impairments affect Para swimmers’ tether forces during maximal fully tethered freestyle swimming, explaining a significant proportion of their activity limitation. It is recommended that maximal fully tethered swimming be included in Paralympic swimming classification as an objective assessment of swimming propulsion.

Hogarth and Burkett are with the School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia. Van de Vliet is with the Medical and Scientific Dept, International Paralympic Committee, Bonn, Germany. Payton is with the Musculoskeletal Science & Sports Medicine Research Centre, Manchester Metropolitan University, Crewe, United Kingdom.

Hogarth (lhogarth@usc.edu.au) is corresponding author.
  • 1.

    Burkett B, Payton C, Van de Vliet P, et al. Performance characteristics of para swimmers: how effective is the swimming classification system? Phys Med Rehabil Clin N Am. 2018;29(2):333346. PubMed ID: 29627092 doi:10.1016/j.pmr.2018.01.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Toussaint HM, Beek PJ. Biomechanics of competitive front crawl swimming. Sports Med. 1992;13(1):824. PubMed ID: 1553457 doi:10.2165/00007256-199213010-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cohen RCZ, Cleary PW, Mason BR, Pease DL. Forces during front crawl swimming at different stroke rates. Sports Eng. 2017;21(1):6373. doi:10.1007/s12283-017-0246-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Takagi H, Nakashima M, Sato Y, Matsuuchi K, Sanders RH. Numerical and experimental investigations of human swimming motions. J Sports Sci. 2016;34(16):15641580. doi:10.1080/02640414.2015.1123284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kjendlie J, Thorsvald K. A tethered swimming test is highly reliable. Port J Sport Sci. 2006;6:231233.

  • 6.

    Morouco PG, Marinho DA, Keskinen KL, Badillo JJ, Marques MC. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance. J Strength Cond Res. 2014;28(11):30933099. PubMed ID: 24796981 doi:10.1519/JSC.0000000000000509

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bollens E, Annemans L, Vaes W, Clarys J. Peripheral EMG comparison between fully tethered and free front crawl swimming. In: Ungerechts B, Wilke K, Reischle K, eds. Swimming Science V. Champaign, IL: Human Kinetics; 1988:173181.

    • Search Google Scholar
    • Export Citation
  • 8.

    Samson M, Monnet T, Bernard A, Lacouture P, David L. Comparative study between fully tethered and free swimming at different paces of swimming in front crawl. Sports Biomech. 2018:18(6):571586. PubMed ID: 29562831 doi:10.1080/14763141.2018.1443492

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):17041711. PubMed ID: 24842469 doi:10.1080/02640414.2014.915420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Amaro NM, Morouco PG, Marques MC, Fernandes RJ, Marinho DA. Biomechanical and bioenergetical evaluation of swimmers using fully-tethered swimming: a qualitative review. J Hum Sport Exerc. 2017;12(4):13461360. doi:10.14198/jhse.2017.124.20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kalva CA, Zagatto AM, da Silva AS, de Araujo MYC, de Almeida PB, Papoti M. Tethered 3-min all-out test did not predict the traditional critical force parameters in inexperienced swimmers. J Sport Med Phys Fitness. 2017;57(9):11261131.

    • Search Google Scholar
    • Export Citation
  • 12.

    Kalva CA, Zagatto AM, da Silva ASR, et al. Relationships among the tethered 3-min all-out test, MAOD and swimming performance. Int J Sports Med. 2017;38(5):353358. doi:10.1055/s-0043-101914

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Morouco P, Keskinen KL, Vilas-Boas JP, Fernandes RJ. Relationship between tethered forces and the four swimming techniques performance. J Appl Biomech. 2011;27(2):161169. PubMed ID: 21576725 doi:10.1123/jab.27.2.161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Morouco PG, Marinho DA, Izquierdo M, Neiva H, Marques MC. Relative contribution of arms and legs in 30 s fully tethered front crawl swimming. Biomed Res Int. 2015;2015:16. PubMed ID: 26539511 doi:10.1155/2015/563206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hogarth L, Nicholson V, Spathis J, et al. A battery of strength tests for evidence-based classification in Para swimming. J Sports Sci. 2018;37(4):110.

    • Search Google Scholar
    • Export Citation
  • 16.

    Dingley AA, Pyne D, Burkett B. Dry-land bilateral hand-force production and swimming performance in paralympic swimmers. Int J Sports Med. 2014;35(11):949953. PubMed ID: 24892653 doi:10.1055/s-0033-1364023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Morouco P, Neiva H, Gonzalez-Badillo JJ, Garrido N, Marinho DA, Marques MC. Associations between dry land strength and power measurements with swimming performance in elite athletes: a pilot study. J Hum Kinet. 2011;29A:105112. PubMed ID: 23486734 doi:10.2478/v10078-011-0065-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tweedy SM, Vanlandewijck YC. International Paralympic Committee position stand—background and scientific principles of classification in Paralympic sport. Br J Sports Med. 2011;45(4):259269. doi:10.1136/bjsm.2009.065060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Morouco PG, Vilas-Boas JP, Fernandes RJ. Evaluation of adolescent swimmers through a 30-s tethered test. Pediatr Exerc Sci. 2012;24(2):312321. PubMed ID: 22728420 doi:10.1123/pes.24.2.312

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Oh YT, Burkett B, Osborough C, Formosa D, Payton C. London 2012 Paralympic swimming: passive drag and the classification system. Br J Sports Med. 2013;47(13):838843. doi:10.1136/bjsports-2013-092192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Runciman P, Derman W, Ferreira S, Albertus-Kajee Y, Tucker R. A descriptive comparison of sprint cycling performance and neuromuscular characteristics in able-bodied athletes and paralympic athletes with cerebral palsy. Am J Phys Med Rehabil. 2015;94(1):2837. doi:10.1097/PHM.0000000000000136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Runciman P, Tucker R, Ferreira S, Albertus-Kajee Y, Derman W. Paralympic athletes with cerebral palsy display altered pacing strategies in distance-deceived shuttle running trials. Scand J Med Sci Sports. 2016;26(10):12391248. PubMed ID: 26493357 doi:10.1111/sms.12575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hogarth L, Payton C, Van de Vliet P, Connick M, Burkett B. A novel method to guide classification of para swimmers with limb deficiency. Scand J Med Sci Sports. 2018;28(11):23972406. PubMed ID: 29846980 doi:10.1111/sms.13229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hogarth L, Payton C, Nicholson V, et al. Classifying motor coordination impairment in Para swimmers with brain injury. J Sci Med Sport. 2019;22(5):526531. PubMed ID: 30503355 doi:10.1016/j.jsams.2018.11.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Nicholson VP, Spathis JG, Hogarth LW, et al. Establishing the reliability of a novel battery of range of motion tests to enable evidence-based classification in para swimming. Phys Ther Sport. 2018;32:3441. PubMed ID: 29730533 doi:10.1016/j.ptsp.2018.04.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 208 208 64
Full Text Views 21 21 1
PDF Downloads 7 7 0