Determination of Submaximal and Maximal Training Zones From a 3-Stage, Variable-Duration, Perceptually Regulated Track Test

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To validate a new perceptually regulated, self-paced maximal oxygen consumption field test (the Running Advisor Billat Training [RABIT] test) that can be used by recreational runners to define personalized training zones. Design: In a cross-sectional study, male and female recreational runners (N = 12; mean [SD] age = 43 [8] y) completed 3 maximal exercise tests (2 RABIT tests and a University of Montreal Track Test), with a 48-hour interval between tests. Methods: The University of Montreal Track Test was a continuous, incremental track test with a 0.5-km·h−1 increment every minute until exhaustion. The RABIT tests were conducted at intensities of 11, 14, and 17 on the rating of perceived exertion (RPE) scale for 10, 5, and 3 minutes, respectively, with a 1-minute rest between efforts. Results: The 2 RABIT tests and the University of Montreal Track Test gave similar mean (SD) maximal oxygen consumption values (53.9 [6.4], 56.4 [9.1], and 55.4 [7.6] mL·kg−1·min−1, respectively, P = .722). The cardiorespiratory and speed responses were reliable as a function of the running intensity (RPE: 11, 14, and 17) and the relative time point for each RPE stage. Indeed, the oxygen consumption, heart rate, ventilation, and speed values did not differ significantly when the running time was expressed as a relative duration of 30%, 60%, or 90% (ie, at 3, 6, and 9 min of a 10-min effort at RPE 11; P = .997). Conclusions: The results demonstrate that the RABIT test is a valid method for defining submaximal and maximal training zones in recreational runners.

Molinari and Billat are with Université d’Évry, Université Paris-Saclay, Évry, France. Palacin, Poinsard, and Billat are with Sorbonne Paris Cité, Université Paris Descartes, Paris, France.

Billat (veroniquelouisebillat@gmail.com) is corresponding author.
  • 1.

    Foster C, Rodriguez-Marroyo JA, de Koning JJ. Monitoring training loads: the past, the present, and the future. Int J Sports Physiol Perform. 2017;12(suppl 2):S2. doi:10.1123/IJSPP.2016-0388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    United States Sports Academy. On ditching the watch while training: re-examining the pace-based approach to training long-distance runners. Sport J. June 2016. http://thesportjournal.org/article/on-ditching-the-watch-while-training-re-examining-the-pace-based-approach-to-training-long-distance-runners/. Accessed July 10, 2019.

    • Search Google Scholar
    • Export Citation
  • 3.

    Léger L, Boucher R. An indirect continuous running multistage field test: the Université de Montréal track test. Can J Appl Sport Sci. 1980;5(2):7784. PubMed ID: 7389053

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Seiler S, Sjursen JE. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scand J Med Sci Sports. 2004;14(5):318325. PubMed ID: 15387806 doi:10.1046/j.1600-0838.2003.00353.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Eston R, Williams JG, Faulkner J. Control of exercise intensity using heart rate, perceived exertion and other non-invasive procedures. In: Eston R, Reilly T, eds. Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data: Physiology. 3rd ed. London, UK: Routledge; 2009: 237271. https://books.google.fr/books?hl=fr&lr=&id=7EUCgf0t0HIC&oi=fnd&pg=PA237&ots=Q0O1zLi5Ew&sig=ejCx41PA1ATgQekQ4oy9v8edyDk&redir_esc=y#v=onepage&q&f=false.

    • Search Google Scholar
    • Export Citation
  • 6.

    Borg GAV. Physical Performance and Perceived Exertion. Oxford, UK: Univer. Lund; 1962.

  • 7.

    Evans H, Parfitt G, Eston R. Use of a perceptually-regulated test to measure maximal oxygen uptake is valid and feels better. Eur J Sport Sci. 2014;14(5):452458. PubMed ID: 24053622 doi:10.1080/17461391.2013.832804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and PrescriptionPhiladelphia, PA: Lippincott Williams & Wilkins; 2013.

    • Search Google Scholar
    • Export Citation
  • 9.

    Ceci R, Hassmén P. Self-monitored exercise at three different RPE intensities in treadmill vs field running. Med Sci Sports Exerc. 1991;23(6):732738. PubMed ID: 1886482 doi:10.1249/00005768-199106000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lim W, Lambrick D, Mauger AR, Woolley B, Faulkner J. The effect of trial familiarisation on the validity and reproducibility of a field-based self-paced VO2max test. Biol Sport. 2016;33(3):269275. PubMed ID: 27601782 doi:10.5604/20831862.1208478

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hawkins MN, Raven PB, Snell PG, Stray-Gundersen J, Levine BD. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc. 2007;39(1):103107. PubMed ID: 17218891 doi:10.1249/01.mss.0000241641.75101.64

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Midgley AW, Carroll S, Marchant D, McNaughton LR, Siegler J. Evaluation of true maximal oxygen uptake based on a novel set of standardized criteria. Appl Physiol Nutr Metab. 2009;34(2):115123. PubMed ID: 19370041 doi:10.1139/H08-146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Midgley AW, McNaughton LR, Carroll S. Verification phase as a useful tool in the determination of the maximal oxygen uptake of distance runners. Appl Physiol Nutr Metab. 2006;31(5):541548. PubMed ID: 17111008 doi: 10.1139/h06-023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37(12):10191028. doi:10.2165/00007256-200737120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307310. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Mauger AR, Sculthorpe N. A new VO2max protocol allowing self-pacing in maximal incremental exercise. Br J Sports Med. 2012;46(1):5963. PubMed ID: 21505226 doi:10.1136/bjsports-2011-090006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Åstrand P-O, Saltin B. Oxygen uptake during the first minutes of heavy muscular exercise. J Appl Physiol. 1961;16(6):971976. doi:10.1152/jappl.1961.16.6.971

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hanson NJ, Scheadler CM, Lee TL, Neuenfeldt NC, Michael TJ, Miller MG. Modality determines VO2max achieved in self-paced exercise tests: validation with the Bruce protocol. Eur J Appl Physiol. 2016;116(7):13131319. PubMed ID: 27150353 doi:10.1007/s00421-016-3384-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mauger AR, Metcalfe AJ, Taylor L, Castle PC. The efficacy of the self-paced VO2max test to measure maximal oxygen uptake in treadmill running. Appl Physiol Nutr Metab. 2013;38(12):12111216. PubMed ID: 24195621 doi:10.1139/apnm-2012-0384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Billat VL, Petot H, Landrain M, Meilland R, Koralsztein JP, Mille-Hamard L. Cardiac output and performance during a marathon race in middle-aged recreational runners. ScientificWorldJournal. 2012;2012:810859. PubMed ID: 22645458 doi:10.1100/2012/810859

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Petot H, Meilland R, Le Moyec L, Mille-Hamard L, Billat VL. A new incremental test for VO2max accurate measurement by increasing VO2max plateau duration, allowing the investigation of its limiting factors. Eur J Appl Physiol. 2012;112(6):22672276. PubMed ID: 21997677 doi:10.1007/s00421-011-2196-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Stachenfeld NS, Eskenazi M, Gleim GW, Coplan NL, Nicholas JA. Predictive accuracy of criteria used to assess maximal oxygen consumption. Am Heart J. 1992;123(4, pt 1):922925. PubMed ID: 1550001 doi:10.1016/0002-8703(92)90697-T

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Scharhag-Rosenberger F, Carlsohn A, Cassel M, Mayer F, Scharhag J. How to test maximal oxygen uptake: a study on timing and testing procedure of a supramaximal verification test. Appl Physiol Nutr Metab. 2011;36(1):153160. doi:10.1139/H10-099

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Straub AM, Midgley AW, Zavorsky GS, Hillman AR. Ramp-incremented and RPE-clamped test protocols elicit similar VO2max values in trained cyclists. Eur J Appl Physiol. 2014;114(8):15811590. PubMed ID: 24777737 doi:10.1007/s00421-014-2891-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Colakoglu M, Ozkaya O, Balci GA, Yapicioglu B. Stroke volume responses may be related to the gap between peak and maximal O2 consumption. Isokinet Exerc Sci. 2016;24(2):133139. doi:10.3233/IES-160610

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Bailey SJ, Vanhatalo A, DiMenna FJ, Wilkerson DP, Jones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43(3):457467. PubMed ID: 20689463 doi:10.1249/MSS.0b013e3181ef3dce

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Foster C, Snyder AC, Thompson NN, Green MA, Foley M, Schrager M. Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc. 1993;25(3):383388. PubMed ID: 8455455 doi:10.1249/00005768-199303000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):18761890. PubMed ID: 20195180 doi:10.1249/MSS.0b013e3181d9cf7f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Aisbett B, Le Rossignol P, McConell GK, Abbiss CR, Snow R. Effects of starting strategy on 5-min cycling time-trial performance. J Sports Sci. 2009;27(11):12011209. PubMed ID: 19724963 doi:10.1080/02640410903114372

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bertuzzi RCM, Nakamura FY, Rossi LC, Kiss MAPD, Franchini E. Independência temporal das respostas do esforço percebido e da freqüência cardíaca em relação à velocidade de corrida na simulação de uma prova de 10 km. Rev Bras Med Esporte. 2006;12(4):179183. doi:10.1590/S1517-86922006000400003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Faulkner J, Parfitt G, Eston R. The rating of perceived exertion during competitive running scales with time. Psychophysiology. 2008;45(6):977985. PubMed ID: 18801015 doi:10.1111/j.1469-8986.2008.00712.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Garcin M, Danel M, Billat V. Perceptual responses in free vs constant pace exercise. Int J Sports Med. 2008;29(6):453459. PubMed ID: 18004686 doi:10.1055/s-2007-989237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Garcin M, Billat V. Perceived exertion scales attest to both intensity and exercise duration. Percept Mot Skills. 2001;93(3):661671. PubMed ID: 11806583 doi:10.2466/pms.2001.93.3.661

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):19952003. PubMed ID: 17095935 doi:10.1249/01.mss.0000232024.06114.a6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R700R707. PubMed ID: 21160059 doi:10.1152/ajpregu.00761.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Eston RG, Williams JG. Reliability of ratings of perceived effort regulation of exercise intensity. Br J Sports Med. 1988;22(4):153155. PubMed ID: 3228684 doi:10.1136/bjsm.22.4.153

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Noakes TD. Linear relationship between the perception of effort and the duration of constant load exercise that remains. J Appl Physiol. 2004;96(4):15711573. PubMed ID: 15016797 doi:10.1152/japplphysiol.01124.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Eston R, Faulkner J, Gibson ASC, Noakes T, Parfitt G. The effect of antecedent fatiguing activity on the relationship between perceived exertion and physiological activity during a constant load exercise task. Psychophysiology. 2007;44(5):779786. PubMed ID: 17617170 doi:10.1111/j.1469-8986.2007.00558.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Joseph T, Johnson B, Battista RA, et al. Perception of fatigue during simulated competition. Med Sci Sports Exerc. 2008;40(2):381386. PubMed ID: 18202562 doi:10.1249/mss.0b013e31815a83f6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Garcin M, Vautier J-F, Vandewalle H, Wolff M, Monod H. Ratings of perceived exertion (RPE) during cycling exercises at constant power output. Ergonomics. 1998;41(10):15001509. PubMed ID: 9802254 doi:10.1080/001401398186234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Coquart JBJ, Dufour Y, Groslambert A, Matran R, Garcin M. Relationships between psychological factors, RPE and time limit estimated by teleoanticipation. Sport Psychol. 2012;26(3):359374. doi:10.1123/tsp.26.3.359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    St Clair Gibson A, Lambert EV, Rauch LHG, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705722. doi:10.2165/00007256-200636080-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Billat V, Hamard L, Koralsztein JP, Morton RH. Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run. J Appl Physiol. 2009;107(2):478487. doi:10.1152/japplphysiol.91296.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Billat V, Brunel NJ-B, Carbillet T, Labbé S, Samson A. Humans are able to self-paced constant running accelerations until exhaustion. Physica A Stat Mech Appl. 2018;506:290304. doi:10.1016/j.physa.2018.04.058

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 145 145 19
Full Text Views 13 13 1
PDF Downloads 10 10 1