Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

The number of studies examining associations between training load and injury has increased exponentially. As a result, many new measures of exposure and training-load-based prognostic factors have been created. The acute:chronic workload ratio (ACWR) is the most popular. However, when recommending the manipulation of a prognostic factor in order to alter the likelihood of an event, one assumes a causal effect. This introduces a series of additional conceptual and methodological considerations that are problematic and should be considered. Because no studies have even tried to estimate causal effects properly, manipulating ACWR in practical settings in order to change injury rates remains a conjecture and an overinterpretation of the available data. Furthermore, there are known issues with the use of ratio data and unrecognized assumptions that negatively affect the ACWR metric for use as a causal prognostic factor. ACWR use in practical settings can lead to inappropriate recommendations, because its causal relation to injury has not been established, it is an inaccurate metric (failing to normalize the numerator by the denominator even when uncoupled), it has a lack of background rationale to support its causal role, it is an ambiguous metric, and it is not consistently and unidirectionally related to injury risk. Conclusion: There is no evidence supporting the use of ACWR in training-load-management systems or for training recommendations aimed at reducing injury risk. The statistical properties of the ratio make the ACWR an inaccurate metric and complicate its interpretation for practical applications. In addition, it adds noise and creates statistical artifacts.

Impellizzeri, Novak, and Coutts are with the Human Performance Research Centre, Faculty of Health, University of Technology Sydney, Sydney, NSW, Australia. Tenan is with Optimum Performance Analytics Associates, Apex, NC, USA. Kempton and Coutts are with the Carlton Football Club, Carlton North, VIC, Australia. Novak is also with the High Performance Dept, Rugby Australia, Moore Park, NSW, Australia.

Impellizzeri (franco.impellizzeri@uts.edu.au) is corresponding author.
  • 1.

    Gabbett TJ, Hulin BT, Blanch P, Whiteley R. High training workloads alone do not cause sports injuries: how you get there is the real issue. Br J Sports Med. 2016;50(8):444445. PubMed ID: 26795610 doi:10.1136/bjsports-2015-095567

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Soligard T, Schwellnus M, Alonso JM, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):10301041. PubMed ID: 27535989 doi:10.1136/bjsports-2016-096581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hernan MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health. 2006;60(7):578586. PubMed ID: 16790829 doi:10.1136/jech.2004.029496

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Stovitz SD, Verhagen E, Shrier I. Distinguishing between causal and non-causal associations: implications for sports medicine clinicians. Br J Sports Med. 2019;53(7):398399. PubMed ID: 29162620 doi:10.1136/bjsports-2017-098520

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hernan MA. A definition of causal effect for epidemiological research. J Epidemiol Community Health. 2004;58(4):265271. PubMed ID: 15026432 doi:10.1136/jech.2002.006361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Shrier I. Understanding causal inference: the future direction in sports injury prevention. Clin J Sport Med. 2007;17(3):220224. PubMed ID: 17513917 doi:10.1097/JSM.0b013e3180385a8c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hernan MA, Robins JM. Causal Inference: What If. Boca Raton, FL: Champan & Hall/CRC; 2020.

  • 8.

    Riley RD, Hayden JA, Steyerberg EW, et al. Prognosis Research Strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 2013;10(2):e1001380. PubMed ID: 23393429 doi:10.1371/journal.pmed.1001380

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hernán MA. The C-word: scientific euphemisms do not improve causal inference from observational data. Am J Public Health. 2018;108(5):616619.

  • 10.

    Hernán MA, Hsu J, Healy B. A second chance to get causal inference right: a classification of data science tasks. Chance. 2019;32(1):4249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC Med Res Methodol. 2008;8(1):70. PubMed ID: 18973665 doi:10.1186/1471-2288-8-70

  • 12.

    Morton RH, Fitz-Clarke JR, Banister EW. Modeling human performance in running. J Appl Physiol. 1990;69(3):11711177. doi:10.1152/jappl.1990.69.3.1171

  • 13.

    Hellard P, Avalos M, Lacoste L, Barale F, Chatard JC, Millet GP. Assessing the limitations of the Banister model in monitoring training. J Sports Sci. 2006;24(5):509520. PubMed ID: 16608765 doi:10.1080/02640410500244697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Williams S, West S, Cross MJ, Stokes KA. Better way to determine the acute:chronic workload ratio? Br J Sports Med. 2017;51(3):209210. PubMed ID: 27650255 doi:10.1136/bjsports-2016-096589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Carey DL, Blanch P, Ong KL, Crossley KM, Crow J, Morris ME. Training loads and injury risk in Australian football-differing acute: chronic workload ratios influence match injury risk. Br J Sports Med. 2017;51(16):12151220. PubMed ID: 27789430 doi:10.1136/bjsports-2016-096309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(suppl 2):S2161S2170. PubMed ID: 28463642 doi:10.1123/IJSPP.2017-0208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Blanch P, Gabbett TJ. Has the athlete trained enough to return to play safely? The acute:chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br J Sports Med. 2016;50(8):471475. PubMed ID: 26701923 doi:10.1136/bjsports-2015-095445

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273280. PubMed ID: 26758673 doi:10.1136/bjsports-2015-095788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bowen L, Gross AS, Gimpel M, Bruce-Low S, Li F-X. Spikes in acute:chronic workload ratio (ACWR) associated with a 5–7 times greater injury rate in English Premier League football players: a comprehensive 3-year study [published online ahead of print February 21, 2019]. Br J Sports Med. PubMed ID: 30792258. doi:10.1136/bjsports-2018-099422

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lolli L, Batterham AM, Hawkins R, et al. Mathematical coupling causes spurious correlation within the conventional acute-to-chronic workload ratio calculations. Br J Sports Med. 2019;53(15):921922.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lolli L, Batterham AM, Hawkins R, et al. The acute-to-chronic workload ratio: an inaccurate scaling index for an unnecessary normalisation process? Br J Sports Med. 2019;53(24):15101512.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rumsfeld JS. Health status and clinical practice: when will they meet? Circulation. 2002;106(1):57.

  • 23.

    Atkinson G, Batterham AM. The use of ratios and percentage changes in sports medicine: time for a rethink? Int J Sports Med. 2012;33(7):505506. PubMed ID: 22760546 doi:10.1055/s-0032-1316355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Curran-Everett D. Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ. 2013;37(3):213219. PubMed ID: 24022766 doi:10.1152/advan.00053.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Buchheit M. Applying the acute:chronic workload ratio in elite football: worth the effort? Br J Sports Med. 2017;51(18):13251327. PubMed ID: 27852586 doi:10.1136/bjsports-2016-097017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pearson K. Mathematical contributions to the theory of evolution – on a form of spurious correlation which may arise when indices are used in the measurements of organs. Proc R Soc Lond. 1897;60(359–367):489498. doi:10.1098/rspl.1896.0076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Tanner JM. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol. 1949;2(1):115. PubMed ID: 18133122 doi:10.1152/jappl.1949.2.1.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Snedecor GW, Cochran WG. Statistical Methods. 3th ed. Ames: Iowa State University Press; 1940.

  • 29.

    Kronmal RA. Spurious correlation and the fallacy of the ratio standard revisited. J R Stat Soc. 1993;156(3):379392. doi:10.2307/2983064

  • 30.

    Allison DB, Paultre F, Goran MI, Poehlman ET, Heymsfield SB. Statistical considerations regarding the use of ratios to adjust data. Int J Obes Relat Metab Disord. 1995;19(9):644652. PubMed ID: 8574275

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Gabbett TJ, Hulin B, Blanch P, Chapman P, Bailey D. To couple or not to couple? for acute:chronic workload ratios and injury risk, does it really matter? Int J Sports Med. 2019;40(9):597600. PubMed ID: 31291651 doi:10.1055/a-0955-5589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Windt J, Gabbett TJ. Is it all for naught? What does mathematical coupling mean for acute:chronic workload ratios? Br J Sports Med. 2019;53(16):988990.

  • 33.

    Coyne JOC, Nimphius S, Newton RU, Haff GG. Does mathematical coupling matter to the acute to chronic workload ratio: a case study from elite sport. Int J Sports Physiol Perform. 2019;14(10):14471454 . doi:10.1123/ijspp.2018-0874

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Altman DG. Statistical reviewing for medical journals. Stat Med. 1998;17(23):26612674. PubMed ID: 9881413 doi:10.1002/(SICI)1097-0258(19981215)17:23%3C2661::AID-SIM33%3E3.0.CO;2-B

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hulin BT, Gabbett TJ, Blanch P, Chapman P, Bailey D, Orchard JW. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br J Sports Med. 2014;48(8):708712. PubMed ID: 23962877 doi:10.1136/bjsports-2013-092524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hulin BT, Gabbett TJ, Lawson DW, Caputi P, Sampson JA. The acute:chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 2016;50(4):231236. PubMed ID: 26511006 doi:10.1136/bjsports-2015-094817

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ahmun R, McCaig S, Tallent J, Williams S, Gabbett T. Association of daily workload, wellness, injury and illness during tours in international cricketers. Int J Sports Physiol Perform. 2019;14(3):369377. doi:10.1123/ijspp.2018-0315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Johnston R, Cahalan R, Bonnett L, et al. Training load and baseline characteristics associated with new injury/pain within an endurance sporting population: a prospective study. Int J Sports Physiol Perform. 2019;14(5):590597. PubMed ID: 30427240 doi:10.1123/ijspp.2018-0644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Raya-Gonzalez J, Nakamura FY, Castillo D, Yanci J, Fanchini M. Determining the relationship between internal load markers and non-contact injuries in young elite soccer players. Int J Sports Physiol Perform. 2019;14(4):421425. doi:10.1123/ijspp.2018-0466

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Hulin BT, Gabbett TJ, Pickworth NJ, Johnston RD, Jenkins DG. Relationships among PlayerLoad, high-intensity intermittent running ability, and injury risk in professional rugby league players. Int J Sports Physiol Perform. 2020;15(3):423429 . doi:10.1123/ijspp.2019-0139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Lathlean TJH, Gastin PB, Newstead SV, Finch CF. Absolute and relative load and injury in elite junior Australian football players over 1 season. Int J Sports Physiol Perform. 2020;15(4):511519 . doi:10.1123/ijspp.2019-0100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Impellizzeri FM, Woodcock S, McCall A, Ward P, Coutts AJ. The acute-chronic workload ratio-injury figure and its ‘sweet spot’ are flawed. SportRxiv Preprint. 2019. doi:10.31236/osf.io/gs8yu

    • Search Google Scholar
    • Export Citation
  • 43.

    Huguet A, Hayden JA, Stinson J, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2(1):71. doi:10.1186/2046-4053-2-71

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Schuit E, Groenwold RH, Harrell FE Jr, et al. Unexpected predictor-outcome associations in clinical prediction research: causes and solutions. CMAJ. 2013;185(10):E499E505.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Smoliga JM, Zavorsky GS. Team logo predicts concussion risk: lessons in protecting a vulnerable sports community from misconceived, but highly publicized epidemiologic research. Epidemiol. 2017;28(5):753757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Jaspers A, Kuyvenhoven JP, Staes F, Frencken WGP, Helsen WF, Brink MS. Examination of the external and internal load indicators’ association with overuse injuries in professional soccer players. J Sci Med Sport. 2018;21(6):579585. PubMed ID: 29079295 doi:10.1016/j.jsams.2017.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Impellizzeri FM, Woodcock S, Coutts AJ, Fanchini M, McCall A, Vigotsky AD. Acute to random chronic workload ratio is ‘as’ associated with injury as acute to actual chronic workload ratio: time to dismiss ACWR and its components. SportRxiv Preprint. 2020. doi:10.31236/osf.io/e8kt4

    • Search Google Scholar
    • Export Citation
  • 48.

    Wang C, Vargas JT, Stokes T, Steele R, Shrier I. Analyzing activity and injury: lessons learned from the acute:chronic workload ratio [published online ahead of print March 03, 2020]. Sports Med. doi:10.1007/s40279-020-01280-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Menaspa P. Building evidence with flawed data? The importance of analysing valid data. Br J Sports Med. 2017;51(15):1173. PubMed ID: 28223302

All Time Past Year Past 30 Days
Abstract Views 1417 1417 345
Full Text Views 78 78 16
PDF Downloads 69 69 13