Topical Sodium Bicarbonate: No Improvement in Blood Buffering Capacity or Exercise Performance

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Alannah K.A. McKay
Search for other papers by Alannah K.A. McKay in
Current site
Google Scholar
PubMed
Close
,
Peter Peeling
Search for other papers by Peter Peeling in
Current site
Google Scholar
PubMed
Close
,
Martyn J. Binnie
Search for other papers by Martyn J. Binnie in
Current site
Google Scholar
PubMed
Close
,
Paul S.R. Goods
Search for other papers by Paul S.R. Goods in
Current site
Google Scholar
PubMed
Close
,
Marc Sim
Search for other papers by Marc Sim in
Current site
Google Scholar
PubMed
Close
,
Rebecca Cross
Search for other papers by Rebecca Cross in
Current site
Google Scholar
PubMed
Close
, and
Jason Siegler
Search for other papers by Jason Siegler in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To assess the efficacy of a topical sodium bicarbonate (0.3 g/kg body weight NaHCO3) application (PR lotion; Amp Human) on blood buffering capacity and performance in recreationally active participants (study A) and moderately trained athletes (study B). Methods: In Study A, 10 participants completed 2 experimental trials: oral NaHCO3 (0.3 g/kg body weight + placebo lotion) or PR lotion (0.9036 g/kg body weight + oral placebo) applied 90 minutes prior to a cycling task to exhaustion (30-s sprints at 120% peak power output with 30-s rest). Capillary blood was collected and analyzed for pH, bicarbonate, and lactate every 10 minutes throughout the 90-minute loading period and postexercise at 5, 10, and 15 minutes. In Study B, 10 cyclists/triathletes completed 2 experimental trials, applying either PR or placebo lotion 30 minutes prior to a cycling performance task (3 × 30-s maximal sprints with 90-s recovery). Capillary blood samples were collected at baseline, preexercise, and postexercise and analyzed as per study A. Results: In Study A, pH and bicarbonate were significantly elevated from baseline after 10 minutes in the oral NaHCO3 condition and throughout recovery compared with no elevation in the PR lotion condition (P < .001). No differences in cycling time occurred between PR lotion (349 [119] s) and oral NaHCO3 (363 [80] s; P = .697). In Study B, no differences in blood parameters, mean power (P = .108), or peak power (P = .448) were observed between conditions. Conclusions: PR lotion was ineffective in altering blood buffering capacity or enhancing performance in either trained or untrained individuals.

McKay, Peeling, Binnie, and Goods are with the School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA, Australia, and the Western Australian Inst of Sport, Mt Claremont, WA, Australia. McKay is also with the Australian Inst of Sport, Bruce, ACT, Australia. Sim is with the School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia, and the Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia. Cross and Siegler are with the School of Science and Health, Sport and Exercise Science, Western Sydney University, Penrith, NSW, Australia.

McKay (alannah.mckay@ausport.gov.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Maughan RJ, Burke LM, Dvorak J, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Int J Sport Nutr Exerc Metab. 2018;28(2):104125. doi:10.1123/ijsnem.2018-0020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lancha Junior AH, Painelli Vde S, Saunders B, Artioli GG. Nutritional strategies to modulate intracellular and extracellular buffering capacity during high-intensity exercise. Sports Med. 2015;45(1):7181. doi:10.1007/s40279-015-0397-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Requena B, Zabala M, Padial P, Feriche B. Sodium bicarbonate and sodium citrate: ergogenic aids? J Strength Cond Res. 2005;19(1):213224. PubMed ID: 15705037

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance. Sports Med. 2011;41(10):801814. PubMed ID: 21923200 doi:10.2165/11591440-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Peart DJ, Siegler JC, Vince RV. Practical recommendations for coaches and athletes: a meta-analysis of sodium bicarbonate use for athletic performance. J Strength Cond Res. 2012;26(7):19751983. PubMed ID: 22505127 doi:10.1519/JSC.0b013e3182576f3d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Jones RL, Stellingwerff T, Artioli GG, Saunders B, Cooper S, Sale C. Dose–response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. Int J Sport Nutr Exerc Metab. 2016;26(5):445453. PubMed ID: 27098290 doi:10.1123/ijsnem.2015-0286

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Siegler JC, Marshall PW, Bray J, Towlson C. Sodium bicarbonate supplementation and ingestion timing: does it matter? J Strength Cond Res. 2012;26(7):19531958. PubMed ID: 21964428 doi:10.1519/JSC.0b013e3182392960

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McNaughton LR. Bicarbonate ingestion: effects of dosage on 60 s cycle ergometry. J Sports Sci. 1992;10(5):415423. PubMed ID: 1331493 doi:10.1080/02640419208729940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Burke LM, Pyne DB. Bicarbonate loading to enhance training and competitive performance. Int J Sports Physiol Perform. 2007;2(1):9397. PubMed ID: 19255457 doi:10.1123/ijspp.2.1.93

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Carr AJ, Gore CJ, Dawson B. Induced alkalosis and caffeine supplementation: effects on 2,000-m rowing performance. Int J Sport Nutr Exerc Metab. 2011;21(5):357364. PubMed ID: 21799214 doi:10.1123/ijsnem.21.5.357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Turnberg LA, Fordtran JS, Carter N, Rector FC. Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J Clin Invest. 1970;49(3):548556. PubMed ID: 5415681 doi:10.1172/JCI106265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kahle LE, Kelly PV, Eliot KA, Weiss EP. Acute sodium bicarbonate loading has negligible effects on resting and exercise blood pressure but causes gastrointestinal distress. Nutr Res. 2013;33(6):479486. PubMed ID: 23746564 doi:10.1016/j.nutres.2013.04.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cameron SL, McLay-Cooke RT, Brown RC, Gray AR, Fairbairn KA. Increased blood pH but not performance with sodium bicarbonate supplementation in elite rugby union players. Int J Sport Nutr Exerc Metab. 2010;20(4):307321. PubMed ID: 20739719 doi:10.1123/ijsnem.20.4.307

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Burke LM. Practical considerations for bicarbonate loading and sports performance. Nestle Nutr Inst Workshop Ser. 2013;75:1526. PubMed ID: 23765347 doi:10.1159/000345814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Driller MW, Gregory JR, Williams AD, Fell JW. The effects of serial and acute NaHCO3 loading in well-trained cyclists. J Strength Cond Res. 2012;26(10):27912797. PubMed ID: 23001395 doi:10.1519/JSC.0b013e318241e18a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Carr AJ, Slater GJ, Gore CJ, Dawson B, Burke LM. Effect of sodium bicarbonate on [HCO3 ], pH, and gastrointestinal symptoms. Int J Sport Nutr Exerc Metab. 2011;21(3):189194. PubMed ID: 21719899 doi:10.1123/ijsnem.21.3.189

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Currell K, Jentjens RL, Jeukendrup AE. Reliability of a cycling time trial in a glycogen-depleted state. Eur J Appl Physiol. 2006;98(6):583589. PubMed ID: 17016701 doi:10.1007/s00421-006-0305-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 19.

    Siegler JC, Midgley AW, Polman RC, Lever R. Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J Strength Cond Res. 2010;24(9):25512557. PubMed ID: 20040895 doi:10.1519/JSC.0b013e3181aeb154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Price MJ, Singh M. Time course of blood bicarbonate and pH three hours after sodium bicarbonate ingestion. Int J Sports Physiol Perform. 2008;3(2):240242. PubMed ID: 19208932 doi:10.1123/ijspp.3.2.240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Renfree A. The time course for changes in plasma [H+] after sodium bicarbonate ingestion. Int J Sports Physiol Perform. 2007;2(3):323326. PubMed ID: 19168932 doi:10.1123/ijspp.2.3.323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gillis DJ, Vellante A, Gallo JA, D’Amico AP. Influence of menthol on recovery from exercise-induced muscle damage. J Strength Cond Res. 2020;34(2):451462. PubMed ID: 30161086 doi:10.1519/JSC.0000000000002833

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    de Oliveira LF, Saunders B, Artioli GG. Is bypassing the stomach a means to optimize sodium bicarbonate supplementation? A case study with a postbariatric surgery individual. Int J Sport Nutr Exerc Metab. 2018;28(6):660663. PubMed ID: 29722576 doi:10.1123/ijsnem.2017-0394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hilton NP, Leach NK, Sparks SA, et al. A novel ingestion strategy for sodium bicarbonate supplementation in a delayed-release form: a randomised crossover study in trained males. Sports Med Open. 2019;5(1):4. PubMed ID: 30680463 doi:10.1186/s40798-019-0177-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Siegler JC, Keatley S, Midgley AW, Nevill AM, McNaughton LR. Pre-exercise alkalosis and acid-base recovery. Int J Sports Med. 2008;29(7):545551. PubMed ID: 18004683 doi:10.1055/s-2007-989261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bishop D, Claudius B. Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sports Exerc. 2005;37(5):759767. PubMed ID: 15870629 doi:10.1249/01.MSS.0000161803.44656.3C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Saunders B, Sale C, Harris RC, Sunderland C. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9(4):627632. PubMed ID: 24155093 doi:10.1123/ijspp.2013-0295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Peeling P, Binnie MJ, Goods PS, Sim M, Burke LM. Evidence-based supplements for the enhancement of athletic performance. Int J Sport Nutr Exerc Metab. 2018;28(2):178187. PubMed ID: 29465269 doi:10.1123/ijsnem.2017-0343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4709 1380 36
Full Text Views 126 44 0
PDF Downloads 153 46 0