The Effects of a Short Specific Versus a Long Traditional Warm-Up on Time-Trial Performance in Cross-Country Skiing Sprint

Click name to view affiliation

Guro Strøm Solli
Search for other papers by Guro Strøm Solli in
Current site
Google Scholar
PubMed
Close
,
Pål Haugnes
Search for other papers by Pål Haugnes in
Current site
Google Scholar
PubMed
Close
,
Jan Kocbach
Search for other papers by Jan Kocbach in
Current site
Google Scholar
PubMed
Close
,
Roland van den Tillaar
Search for other papers by Roland van den Tillaar in
Current site
Google Scholar
PubMed
Close
,
Per Øyvind Torvik
Search for other papers by Per Øyvind Torvik in
Current site
Google Scholar
PubMed
Close
, and
Øyvind Sandbakk
Search for other papers by Øyvind Sandbakk in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare the effects of a short specific and a long traditional warm-up on time-trial performance in cross-country skiing sprint using the skating style, as well as related differences in pacing strategy and physiological responses. Methods: In total, 14 (8 men and 6 women) national-level Norwegian cross-country skiers (age 20.4 [3.1] y; VO2max 65.9 [5.7] mL/kg/min) performed 2 types of warm-up (short, 8 × 100 m with gradual increase from 60% to 95% of maximal speed with a 1-min rest between sprints, and long, ∼35 min at low intensity, including 5 min at moderate and 3 min at high intensity) in a randomized order with 1 hour and 40 minutes of rest between tests. Each warm-up was followed by a 1.3-km sprint time trial, with continuous measurements of speed and heart rate. Results: No difference in total time for the time trial between the short and long warm-ups (199 [17] vs 200 [16] s; P = .952), or average speed and heart rate for the total course, or in the 6 terrain sections (all P < .41, η2 < .06) was found. There was an effect of order, with total time-trial time being shorter during test 2 than test 1 (197 [16] vs 202 [16] s; P = .004). No significant difference in blood lactate and rating of perceived exertion was found between the short versus long warm-ups or between test 1 and test 2 at any of the measurement points during the test day (P < .58, η2 > .01). Conclusions: This study indicates that a short specific warm-up could be as effective as a long traditional warm-up during a sprint time trial in cross-country skiing.

Solli, van den Tillaar, and Torvik are with the Dept of Sports Sciences and Physical Education, Nord University, Bodø, Norway. Solli, Haugnes, Kocbach, and Sandbakk are with the Center for Elite Sports Research, Dept of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway. Kocbach is also with the NORCE, Norwegian Research Center, Bergen, Norway.

Solli (guro.s.solli@nord.no) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Bishop D. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003;33(6):439454. PubMed ID: 12744717 doi:10.2165/00007256-200333060-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fradkin AJ, Zazryn TR, Smoliga JM. Effects of warming-up on physical performance: a systematic review with meta-analysis. J Strength Cond Res. 2010;24(1):140148. PubMed ID: 19996770 doi:10.1519/JSC.0b013e3181c643a0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):15231546. PubMed ID: 26400696 doi:10.1007/s40279-015-0376-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bishop D. Warm up II: performance changes following active warm up and how to structure the warm up. Sports Med. 2003;33(7):483498. PubMed ID: 12762825 doi:10.2165/00007256-200333070-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bailey SJ, Vanhatalo A, Wilkerson DP, Dimenna FJ, Jones AM. Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J Appl Physiol. 2009;107(6):17431756. doi:10.1152/japplphysiol.00810.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Di Prampero PE, Davies CT, Cerretelli P, Margaria R. An analysis of O2 debt contracted in submaximal exercise. J Appl Physiol. 1970;29(5):547551. PubMed ID: 5474842 doi:10.1152/jappl.1970.29.5.547

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bishop D, Bonetti D, Dawson B. The effect of three different warm-up intensities on kayak ergometer performance. Med Sci Sports Exerc. 2001;33(6):10261032. PubMed ID: 11404669 doi:10.1097/00005768-200106000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hajoglou A, Foster C, De Koning JJ, Lucia A, Kernozek TW, Porcari JP. Effect of warm-up on cycle time trial performance. Med Sci Sports Exerc. 2005;37(9):16081614. PubMed ID: 16177615 doi:10.1249/01.mss.0000177589.02381.0a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Zois J, Bishop D, Aughey R. High-intensity warm-ups: effects during subsequent intermittent exercise. Int J Sports Physiol Perform. 2015;10(4):498503. PubMed ID: 25393323 doi:10.1123/ijspp.2014-0338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Zois J, Bishop DJ, Ball K, Aughey R. High-intensity warm-ups elicit superior performance to a current soccer warm-up routine. Int J Sports Physiol Perform. 2011;14(6):522528.

    • Search Google Scholar
    • Export Citation
  • 11.

    Neiva HP, Marques MC, Barbosa TM, et al. The effects of different warm-up volumes on the 100-m swimming performance: a randomized crossover study. J Strength Cond Res. 2015;29(11):30263036. PubMed ID: 26506059 doi:10.1519/JSC.0000000000001141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sandbakk Ø. Physiological and Biomechanical Aspects of Sprint Skiing. Trondheim, Norway: Human Movement Science, Norwegian University of Science and Technology; 2011.

    • Search Google Scholar
    • Export Citation
  • 13.

    Vesterinen V, Mikkola J, Nummela A, Hynynen E, Hakkinen K. Fatigue in a simulated cross-country skiing sprint competition. J Sports Sci. 2009;27(10):10691077. PubMed ID: 19847690 doi:10.1080/02640410903081860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Stöggl T, Lindinger S, Muller E. Analysis of a simulated sprint competition in classical cross country skiing. Scand J Med Sci Sports. 2007;17(4):362372.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sandbakk O, Holmberg HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017;12(8):10031011. PubMed ID: 28095083 doi:10.1123/ijspp.2016-0749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Andersson E, Bjorklund G, Holmberg HC, Ortenblad N. Energy system contributions and determinants of performance in sprint cross-country skiing. Scand J Med Sci Sports. 2017;27(4):385398. PubMed ID: 26923666 doi:10.1111/sms.12666

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Andersson EP, Govus A, Shannon OM, McGawley K. Sex differences in performance and pacing strategies during sprint skiing. Front Physiol. 2019;10:295. PubMed ID: 30967794 doi:10.3389/fphys.2019.00295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sandbakk O, Ettema G, Leirdal S, Jakobsen V, Holmberg HC. Analysis of a sprint ski race and associated laboratory determinants of world-class performance. Eur J Appl Physiol. 2011;111(6):947957. PubMed ID: 21079989 doi:10.1007/s00421-010-1719-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    van den Tillaar R, Lerberg E, von Heimburg E. Comparison of three types of warm-up upon sprint ability in experienced soccer players. J Sport Health Sci. 2019;8(6):574578. doi:10.1016/j.jshs.2016.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    van den Tillaar R, von Heimburg E. Comparison of two types of warm-up upon repeated-sprint performance in experienced soccer players. J Strength Cond Res. 2016;30(8):22582265. PubMed ID: 26808861 doi:10.1519/JSC.0000000000001331

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    van den Tillaar R, Vatten T, von Heimburg E. Effects of short or long warm-up on intermediate running performance. J Strength Cond Res. 2017;31(1):3744. PubMed ID: 27191697 doi:10.1519/JSC.0000000000001489

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Haugnes P, Kocbach J, Luchsinger H, Ettema G, Sandbakk Ø. The interval-based physiological and mechanical demands of cross-country ski training. Int J Sports Physiol Perform. 2019;14(10):13711377. doi:10.1123/ijspp.2018-1007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Tønnessen E, Haugen TA, Hem E, Leirstein S, Seiler S. Maximal aerobic capacity in the Winter-Olympics endurance disciplines: Olympic-medal benchmarks for the time period 1990–2013. Int J Sports Physiol Perform. 2015;10(7):835839. doi:10.1123/ijspp.2014-0431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):9298. PubMed ID: 5523831

  • 25.

    Ingjer F. Factors influencing assessment of maximal heart rate. Scand J Med Sci Sports. 1991;1(3):134140. doi:10.1111/j.1600-0838.1991.tb00285.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Sandbakk Ø, Losnegard T, Skattebo Ø, Hegge AM, Tønnessen E, Kocbach J. Analysis of classical time-trial performance and technique-specific physiological determinants in elite female cross-country skiers. Front Physiol. 2016;7:326. PubMed ID: 27536245 doi:10.3389/fphys.2016.00326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gløersen Ø, Kocbach J, Gilgien M. Tracking performance in endurance racing sports: evaluation of the accuracy offered by three commercial gnss receivers aimed at the sports market. Front Physiol. 2018;9:1425. doi:10.3389/fphys.2018.01425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cohen J. Statistical Power Analysis for the BehaviouralSciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 29.

    Stewart IB, Sleivert GG. The effect of warm-up intensity on range of motion and anaerobic performance. J Orthop Sports Phys Ther. 1998;27(2):154161. PubMed ID: 9475139 doi:10.2519/jospt.1998.27.2.154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Swaren M, Eriksson A. Power and pacing calculations based on real-time locating data from a cross-country skiing sprint race. Sports Biomech. 2019;18(2):190201. PubMed ID: 29141496 doi:10.1080/14763141.2017.1391323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Burnley M, Doust JH, Jones AM. Effects of prior warm-up regime on severe-intensity cycling performance. Med Sci Sports Exerc. 2005;37(5):838845. PubMed ID: 15870639 doi:10.1249/01.MSS.0000162617.18250.77

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Carter H, Grice Y, Dekerle J, Brickley G, Hammond AJ, Pringle JS. Effect of prior exercise above and below critical power on exercise to exhaustion. Med Sci Sports Exerc. 2005;37(5):775781. PubMed ID: 15870631 doi:10.1249/01.MSS.0000162631.07404.7C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ferguson C, Whipp BJ, Cathcart AJ, Rossiter HB, Turner AP, Ward SA. Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance. J Appl Physiol. 2007;103(3):812822. doi:10.1152/japplphysiol.01410.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Wilkerson DP, Koppo K, Barstow TJ, Jones AM. Effect of prior multiple-sprint exercise on pulmonary O2 uptake kinetics following the onset of perimaximal exercise. J Appl Physiol. 2004;97(4):12271236. doi:10.1152/japplphysiol.01325.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Burnley M, Doust JH, Jones AM. Time required for the restoration of normal heavy exercise vo2 kinetics following prior heavy exercise. J Appl Physiol. 2006;101(5):13201327. doi:10.1152/japplphysiol.00475.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3163 530 22
Full Text Views 109 36 10
PDF Downloads 87 15 1