Transcranial Direct Current Stimulation: No Effect on Aerobic Performance, Heart Rate, or Rating of Perceived Exertion in a Progressive Taekwondo-Specific Test

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) on the aerobic performance, heart rate (HR), and rating of perceived exertion (RPE) of highly trained taekwondo athletes. Methods: Twelve (8 men and 4 women) international/national-level athletes received a-tDCS or sham treatment over the M1 location in a randomized, single-blind crossover design. The stimulation was delivered at 1.5 mA for 15 min using an extracephalic bihemispheric montage. Athletes performed the progressive-specific taekwondo test 10 min after stimulation. HR was monitored continuously during the test, and RPE was registered at the end of each stage and at test cessation. Results: There were no significant differences between sham and a-tDCS in time to exhaustion (14.6 and 14.9, respectively, P = .53, effect size = 0.15) and peak kicking frequency (52 and 53.6, respectively, P = .53, effect size = 0.15) or in HR (P > .05) and RPE responses (P > .05). Conclusions: Extracephalic bihemispheric a-tDCS over M1 did not influence the aerobic performance of taekwondo athletes or their psychophysiological responses, so athletes and staff should be cautious when using it in a direct-to-consumer manner.

Mesquita is with the School of Kinesiology, Auburn University, Auburn, AL. Franchini is with the Sport Dept, University of São Paulo, São Paulo, Brazil, and the Australian Inst of Sport, Canberra, Australia. Romano-Silva is with the Dept of Mental Health, and Lage, the Physical Education Dept, Federal University of Minas Gerais, Belo Horizonte, Brazil. Albuquerque is with the Sports Dept, Federal University of Minas Gerais, Minas Gerais, Brazil.

Mesquita (pmesquita@live.com) is corresponding author.
  • 1.

    Bridge CA, Ferreira da Silva Santos J, Chaabène H, Pieter W, Franchini E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014;44(6):713733. PubMed ID: 24549477 doi:10.1007/s40279-014-0159-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bridge CA, Jones MA, Drust B. Physiological responses and perceived exertion during international taekwondo competition. Int J Sports Physiol Perform. 2009;4(4):485493. PubMed ID: 20029099 doi:10.1123/ijspp.4.4.485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Campos FA, Bertuzzi R, Dourado AC, Santos VG, Franchini E. Energy demands in taekwondo athletes during combat simulation. Eur J Appl Physiol. 2012;112(4):12211228. PubMed ID: 21769736 doi:10.1007/s00421-011-2071-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Angius L, Hopker J, Mauger AR. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front Physiol. 2017;8(90):17. doi:10.3389/fphys.2017.00090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:18991901. doi:10.1212/WNL.57.10.1899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. The Neuroscientist. 2011;17(1):3753. doi:10.1177/1073858410386614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125:22382247. PubMed ID: 12244081 doi:10.1093/brain/awf238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hazime FA, da Cunha RA, Soliaman RR, et al. Anodal transcranial direct current stimulation (tDCS) increases isometric strength of shoulder rotators muscles in handball players. Int J Sports Phys Ther. 2017;12(3):402407. PubMed ID: 28593094

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lattari E, Campos C, Lamego MK, et al. Can transcranial direct current stimulation improve muscle power in individuals with advanced weight-training experience? J Strength Cond Res. 2020;34(1):97103. doi:10.1519/JSC.0000000000001956

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Angius L, Mauger AR, Hopker J, Pascual-Leone A, Santarnecchi E, Marcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018;11:108117. PubMed ID: 29079458 doi:10.1016/j.brs.2017.09.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Vitor-Costa M, Okuno NM, Bortolotti H, et al. Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling. PLoS One. 2015;10(12):e0144916. doi:10.1371/journal.pone.0144916

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):17251789. PubMed ID: 11581501 doi:10.1152/physrev.2001.81.4.1725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Okano AH, Machado DGS, Oliveira Neto L, et al. Can Transcranial direct current stimulation modulate psychophysiological response in sedentary men during vigorous aerobic exercise? Int J Sports Med. 2017;38(7):493500. PubMed ID: 28514807 doi:10.1055/s-0042-121897

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Angius L, Hopker JG, Marcora SM, Mauger AR. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol. 2015;115(11):23112319. PubMed ID: 26148882 doi:10.1007/s00421-015-3212-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Barwood MJ, Butterworth J, Corbett J, et al. The effects of direct current stimulation on exercise performance, pacing and perception in temperate and hot environments. Brain Stimul. 2016;9(6):842849. PubMed ID: 27567471 doi:10.1016/j.brs.2016.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Okano AH, Fontes EB, Montenegro RA, et al. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med. 2015;49(18):12131218. PubMed ID: 23446641 doi:10.1136/bjsports-2012-091658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lattari E, de Oliveira BS, Oliveira BRR, de Mello Pedreiro RC, Machado S, Neto GAM. Effects of transcranial direct current stimulation on time limit and ratings of perceived exertion in physically active women. Neurosci Lett. 2018;662:1216. PubMed ID: 28993207 doi:10.1016/j.neulet.2017.10.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Machado DGS, Unal G, Andrade SM, et al. Effect of transcranial direct current stimulation on exercise performance: a systematic review and meta-analysis. Brain Stimul. 2019;12(3):593605. PubMed ID: 30630690 doi:10.1016/j.brs.2018.12.227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Furuya S, Klaus M, Nitsche MA, Paulus W, Altenmuller E. Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. J Neurosci. 2014;34(41):1383413839. PubMed ID: 25297109 doi:10.1523/JNEUROSCI.1170-14.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mesquita PHC, Lage GM, Franchini E, Romano-Silva MA, Albuquerque MR. Bi-hemispheric anodal transcranial direct current stimulation worsens taekwondo-related performance. Hum Mov Sci. 2019;66:578586. PubMed ID: 31254810 doi:10.1016/j.humov.2019.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Valenzuela PL, Amo C, Sánchez-Martínez G, et al. Enhancement of mood but not performance in elite athletes with transcranial direct-current stimulation. Int J Sports Physiol Perform. 2018;14(3):310316. doi:10.1123/ijspp.2018-0473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Laurent CM, Green JM, Bishop PA, et al. A practical approach to monitoring recovery: development of a perceived recovery status scale. J Strength Cond Res. 2011;25(3):620628. PubMed ID: 20581704 doi:10.1519/JSC.0b013e3181c69ec6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sant'Ana J, Franchini E, Murias J, Diefenthaeler F. Validity of a taekwondo specific test to measure VO2peak and the heart rate deflection point. J Strength Cond Res. 2019;33(9):25232529. doi:10.1519/JSC.0000000000002153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. doi:10.1249/00005768-198205000-00012

  • 25.

    Hopkins WG. A scale of magnitudes for effect statistics. A new view of statistics. 2002. https://sportsci.org/resource/stats/effectmag.html. Accessed November 20, 2018.

    • Export Citation
  • 26.

    Suppiah HT, Low CY, Chia M. Effects of sport-specific training intensity on sleep patterns and psychomotor performance in adolescent athletes. Pediatr Exerc Sci. 2016;28(4):588595. PubMed ID: 26757487 doi:10.1123/pes.2015-0205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Field A. Discovering Statistics Using SPSS. 3rd ed. London, UK: Sage; 2009.

  • 28.

    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Jamil A, Batsikadze G, Kuo HI, et al. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol. 2017;595(4):12731288. PubMed ID: 27723104 doi:10.1113/JP272738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):19872000. PubMed ID: 23339180 doi:10.1113/jphysiol.2012.249730

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Vargas VZ, Baptista AF, Pereira GOC, et al. Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. J Strength Cond Res. 2018;32(5):13361341. doi:10.1519/JSC.0000000000001985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Montenegro RA, Farinatti Pde TV, Fontes EB, et al. Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neurosci Lett. 2011;497(1):3236. PubMed ID: 21527314 doi:10.1016/j.neulet.2011.04.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Magalhaes Sales M, De Sousa CV, Vieira Browne RA, et al. Transcranial direct current stimulation improves muscle isokinetic performance of young trained individuals. Med Sport. 2016;69(2):163172.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 403 403 91
Full Text Views 13 13 1
PDF Downloads 15 15 1