Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.

Barranco-Gil, Alejo, Gil-Cabrera, Montalvo-Pérez, Talavera, Moral-González, Clemente-Suárez, and Lucia are with the Faculty of Sport Sciences, European University of Madrid, Madrid, Spain. Valenzuela is with Physiology Unit, Dept of Systems Biology, School of Medicine, University of Alcalá, Madrid, Spain, and the Dept of Sport and Health, Spanish Agency for Health Protection in Sport, Madrid, Spain. Clemente-Suárez is also with the Grupo de Investigación en Cultura, Educación y Sociedad, University of the Coast, Barranquilla, Colombia. Lucia is also with the Inst de Investigación Hospital 12 de Octubre, Madrid, Spain.

Valenzuela (pedrol.valenzuela@edu.uah.es) is corresponding author.
  • 1.

    Bishop D. Warm-up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003;33(6):439-454. PubMed ID: 12744717 doi:10.2165/00007256-200333060-00005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kilduff LP, Finn CV, Baker JS, Cook CJ, West DJ. Preconditioning strategies to enhance physical performance on the day of competition. Int J Sports Physiol Perform. 2013;8(6):677681. PubMed ID: 23689163 doi:10.1123/ijspp.8.6.677.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):15231546. PubMed ID: 26400696 doi:10.1007/s40279-015-0376-x.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fradkin AJ, Zazryn TR, Smoliga JM. Effects of warming-up on physical performance: a systematic review with meta-analysis. J Strength Cond Res. 2010;24(1):140148. PubMed ID: 19996770 doi:10.1519/JSC.0b013e3181c643a0.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Silva LM, Neiva HP, Marques MC, Izquierdo M, Marinho DA. Effects of warm-up, post-warm-up, and re-warm-up strategies on explosive efforts in team sports: a systematic review. Sports Med. 2018;48(10):22852299. PubMed ID: 29968230 doi:10.1007/s40279-018-0958-5.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bunn JA, Eschbach LC, Magal M, Wells EK. The effects of warm-up duration on cycling time trial performance in trained cyclists. Cent Eur J Sport Sci Med. 2017;17(1):518. doi:10.18276/cej.2017.1-01.

    • Search Google Scholar
    • Export Citation
  • 7.

    Zourdos MC, Bazyler CD, Jo E, et al. Impact of a submaximal warm-up on endurance performance in highly trained and competitive male runners. Res Q Exerc Sport. 2017;88(1):114119. PubMed ID: 27636554 doi:10.1080/02701367.2016.1224294.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bishop D. Warm-up II: performance changes following active warm-up and how to structure the warm-up. Sports Med. 2003;33(7):483498. PubMed ID: 12762825 doi:10.2165/00007256-200333070-00002.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    García-Pinillos F, Ramírez-Campillo R, Roche-Seruendo LE, Soto-Hermoso VM, Latorre-Román P. How do recreational endurance runners warm-up and cool-down? A descriptive study on the use of continuous runs. Int J Perform Anal Sport. 2019;19(1):102109. doi:10.1080/24748668.2019.1566846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hodgson M, Docherty D, Robbins D. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 2005;35(7):585595. PubMed ID: 16026172 doi:10.2165/00007256-200535070-00004.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Seitz LB, Haff GG. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016;46(2):231240. PubMed ID: 26508319 doi:10.1007/s40279-015-0415-7.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Boullosa D, Del Rosso S, Behm DG, Foster C. Post-activation potentiation (PAP) in endurance sports: a review. Eur J Sport Sci. 2018;18(5):595610. PubMed ID: 29490594 doi:10.1080/17461391.2018.1438519.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    MacInnis M, Thomas A, Philips S. The reliability of 4-minute and 20-minute time trials and their relationships to functional threshold power in trained cyclists. Int J Sport Physiol Perform. 2019;14(1):3845. doi:10.1123/ijspp.2018-0100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Valenzuela PL, Morales JS, Foster C, Lucia A, de la Villa P. Is the functional threshold power (FTP) a valid surrogate of the lactate threshold? Int J Sport Physiol Perform. 2018;13(10):12931298. doi:10.1123/ijspp.2018-0008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Borg G. Borg’s Perceived Exertion and Pain Scales. 7th ed. Champaign, IL: Human Kinetics; 1998.

  • 16.

    Valenzuela PL, Sánchez-Martínez G, Torrontegi E, et al. Acute responses to on-court repeated-sprint training performed with blood flow restriction versus systemic hypoxia in elite badminton athletes. Int J Sports Physiol Perform. 2019;14(9):12801287. doi:10.1123/ijspp.2018-0878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Crum EM, O’Connor WJ, Van Loo L, Valckx M, Stannard SR. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur J Sport Sci. 2017;17(8):10371043. PubMed ID: 28557670 doi:10.1080/17461391.2017.1330899.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Moreira DG, Costello JT, Brito CJ, et al. Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature. J Therm Biol. 2017;69:155162. PubMed ID: 29037377 doi:10.1016/j.jtherbio.2017.07.006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins W. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:14.

  • 20.

    Hopkins W, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1:5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Binnie M, Landers G, Peeling P. Effect of different warm-up procedures on subsequent swim and overall sprint distance triathlon performance. J Strength Cond Res. 2012;26(9):24382446. PubMed ID: 22067241 doi:10.1519/JSC.0b013e31823f29c6.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    van den Tillaar R, Vatten T, von Heimburg E. Effects of short or long warm-up on intermediate running performance. J Strength Cond Res. 2017;31(1):3744. PubMed ID: 27191697 doi:10.1519/JSC.0000000000001489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ückert S, Joch W. Effects of warm-up and precooling on endurance performance in the heat. Br J Sports Med. 2007;41(6):380384. PubMed ID: 17224434 doi:10.1136/bjsm.2006.032292.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Caritá RA, Greco CC, Denadai BS. The positive effects of priming exercise on oxygen uptake kinetics and high-intensity exercise performance are not magnified by a fast-start pacing strategy in trained cyclists. PLoS One. 2014;9(4):e95202. doi:10.1371/journal.pone.0095202.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Caritá RA, Greco CC, Denadai BS. Prior heavy-intensity exercise’s enhancement of oxygen-uptake kinetics and short-term high-intensity exercise performance independent of aerobic-training status. Int J Sports Physiol Perform. 2015;10(3):339345. doi:10.1123/ijspp.2014-0131.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Veen J, Corbett M, Renfree A. Maximal sprints within the warm-up does not affect pacing or performance in a 10 km cycle time trial. J Hum Sport Exerc. 2019;15(2):111. doi:10.14198/jhse.2020.152.07.

    • Search Google Scholar
    • Export Citation
  • 28.

    Silva RA, Silva-Júnior FL, Pinheiro FA, Souza PF, Boullosa DA, Pires FO. Acute prior heavy strength exercise bouts improve the 20-km cycling time trial performance. J Strength Cond Res. 2014;28(9):25132520. PubMed ID: 24584047 doi:10.1519/JSC.0000000000000442.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Chorley A, Lamb KL. The effects of a cycling warm-up including high-intensity heavy-resistance conditioning contractions on subsequent 4-km time trial performance. J Strength Cond Res. 2019;33(1):5765. PubMed ID: 28368959 doi:10.1519/JSC.0000000000001908.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Feros SA, Young WB, Rice AJ, Talpey SW. The effect of including a series of isometric conditioning contractions to the rowing warm-up on 1,000-m rowing ergometer time trial performance. J Strength Cond Res. 2012;26(12):33263334. PubMed ID: 22266645 doi:10.1519/JSC.0b013e3182495025.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mieras M, Heesch W, Slivka D. Physiological and psychological responses to outdoor vs. laboratory cycling. J Strength Cond Res. 2014;28(8):23242329. PubMed ID: 24476776 doi:10.1519/JSC.0000000000000384.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 297 297 45
Full Text Views 29 29 1
PDF Downloads 26 26 1