Effect of Volume on Eccentric Overload–Induced Postactivation Potentiation of Jumps

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To investigate the postactivation potentiation (PAP) effects of different eccentric overload (EOL) exercise volumes on countermovement-jump (CMJ) and standing-long-jump (LJ) performance. Methods: In total, 13 male university soccer players participated in a crossover design study following a familiarization period. Control (no PAP) CMJ and LJ performances were recorded, and 3 experimental protocols were performed in a randomized order: 1, 2, or 3 sets of 6 repetitions of flywheel EOL half-squats (inertia = 0.029 kg·m2). Performance of CMJ and LJ was measured 3 and 6 minutes after all experimental conditions. The time course and magnitude of the PAP were compared between conditions. Results: Meaningful positive PAP effects were reported for CMJ after 2 (Bayes factor [BF10] = 3.15, moderate) and 3 (BF10 = 3.25, moderate) sets but not after 1 set (BF10 = 2.10, anecdotal). Meaningful positive PAP effects were reported for LJ after 2 (BF10 = 3.05, moderate) and 3 (BF10 = 3.44, moderate) sets but not after 1 set (BF10 = 0.53, anecdotal). The 2- and 3-set protocols resulted in meaningful positive PAP effects on both CMJ and LJ after 6 minutes but not after 3 minutes. Conclusion: This study reported beneficial effects of multiset EOL exercise over a single set. A minimum of 2 sets of flywheel EOL half-squats are required to induce PAP effects on CMJ and LJ performance of male university soccer players. Rest intervals of around 6 minutes (>3 min) are required to maximize the PAP effects via multiple sets of EOL exercise. However, further research is needed to clarify the optimal EOL protocol configurations for PAP response.

de Keijzer, McErlain-Naylor, and Beato are with the School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom. Dello Iacono is with the Inst for Clinical Exercise and Health Science, School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom.

Beato (m.beato@uos.ac.uk) is corresponding author.
  • 1.

    Beato M, Stiff A, Coratella G. Effects of postactivation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength [published online ahead of print January 4, 2019]. J Strength Cond Res. doi:10.1519/JSC.0000000000003005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bauer P, Sansone P, Mitter B, Makivic B, Seitz LB, Tschan H. Acute effects of back squats on countermovement jump performance across multiple sets of a contrast training protocol in resistance-trained men. J Strength Cond Res. 2019;33:9951000. PubMed ID: 29309389 doi:10.1519/JSC.0000000000002422

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    McErlain-Naylor S, King M, Pain MT. Determinants of countermovement jump performance: a kinetic and kinematic analysis. J Sports Sci. 2014;32:18051812. PubMed ID: 24875041 doi:10.1080/02640414.2014.924055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39:147166. PubMed ID: 19203135 doi:10.2165/00007256-200939020-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Douglas J, Pearson S, Ross A, McGuigan M. Effects of accentuated eccentric loading on muscle properties, strength, power, and speed in resistance-trained rugby players. J Strength Cond Res. 2018;32:27502761. PubMed ID: 30113915 doi:10.1519/JSC.0000000000002772

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wallace BJ, Shapiro R, Wallace KL, Abel MG, Symons TB. Muscular and neural contributions to postactivation potentiation. J Strength Cond Res. 2019;33:615625. PubMed ID: 30589723 doi:10.1519/JSC.0000000000003011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Seitz LB, Haff GG. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016;46:231240. doi:10.1007/s40279-015-0415-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Dobbs WC, Tolusso DV, Fedewa MV, Esco MR. Effect of postactivation potentiation on explosive vertical jump: a systematic review and meta-analysis. J Strength Cond Res. 2019;33:20092018. PubMed ID: 30138241 doi:10.1519/JSC.0000000000002750

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gołaś A, Maszczyk A, Zajac A, Mikołajec K, Stastny P. Optimizing post activation potentiation for explosive activities in competitive sports. J Hum Kinet. 2016;52:95106. doi:10.1515/hukin-2015-0197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Walker S, Blazevich AJ, Haff GG, Tufano JJ, Newton RU, Häkkinen K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front Physiol. 2016;7:149. PubMed ID: 27199764 doi:10.3389/fphys.2016.00149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Coratella AG, Beato M, E, Scurati R, Milanese C. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol Sport. 2019;36:241248. doi:10.5114/biolsport.2019.87045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Franchi MV, Reeves ND, Narici MV. Skeletal muscle remodeling in response to eccentric vs concentric loading: morphological, molecular, and metabolic adaptations. Front Physiol. 2017;8:447. PubMed ID: 28725197 doi:10.3389/fphys.2017.00447

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, González-Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2017;20:943951. PubMed ID: 28385560 doi:10.1016/j.jsams.2017.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sabido R, Hernández-Davó JL, Pereyra-Gerber GT. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int J Sports Physiol Perform. 2018;13:482489. PubMed ID: 28872379 doi:10.1123/ijspp.2017-0282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Maroto-Izquierdo S, García-López D, De Paz JA. Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball Players. J Hum Kinet. 2017;60:133143. PubMed ID: 29339993 doi:10.1515/hukin-2017-0096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Beato M, De Keijzer KL, Leskauskas Z, Allen WJ, Dello Iacono A, McErlain-Naylor SA. Effect of postactivation potentiation after medium vs high inertia eccentric overload exercise on standing long jump, countermovement jump, and change of direction performance [published online ahead of print June 19, 2019]. J Strength Cond Res. doi:10.1519/JSC.0000000000003214

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gonzalo-Skok O, Tous-Fajardo J, Valero-Campo C, et al. Eccentric-overload training in team-sport functional performance: constant bilateral vertical versus variable unilateral multidirectional movements. Int J Sports Physiol Perform. 2017;12:951958. PubMed ID: 27967273 doi:10.1123/ijspp.2016-0251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Piqueras-Sanchiz F, Martín-Rodríguez S, Martínez-Aranda LM, et al. Effects of moderate vs. high iso-inertial loads on power, velocity, work and hamstring contractile function after flywheel resistance exercise. PLoS One. 2019;14:e0211700.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    van den Tillaar R, Gamble P. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs. Sports Biomech. 2018;18:539552. PubMed ID: 29578385 doi:10.1080/14763141.2018.1442871

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bianchi M, Coratella G, Dello Iacono A, Beato M. Comparative effects of single vs double weekly plyometric training sessions on jump, sprint and COD abilities of elite youth football players. J Sports Med Phys Fitness. 2019;59:910915. PubMed ID: 30160086 doi:10.23736/S0022-4707.18.08804-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Beato M, Bianchi M, Coratella G, Merlini M, Drust B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J Strength Cond Res. 2018;32:289296. PubMed ID: 29176387 doi:10.1519/JSC.0000000000002371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Markovic G, Dizdar D, Jukic I, Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res. 2004;18:551555. PubMed ID: 15320660

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16:297334. doi:10.1007/BF02310555

  • 24.

    Sainani KL. The problem with “magnitude-based inference.” Med Sci Sports Exerc. 2018;50:21662176. PubMed ID: 29683920 doi:10.1249/MSS.0000000000001645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wang H, Chow SC, Chen M. A Bayesian approach on sample size calculation for comparing means. J Biopharm Stat. 2005;15:799807. PubMed ID: 16078386 doi:10.1081/BIP-200067789

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Westfall PH, Johnson WO, Utts JM. A Bayesian perspective on the Bonferroni adjustment. Biometrika. 1997;84:419427. doi:10.1093/biomet/84.2.419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Wagenmakers EJ, Lee MD. Bayesian Data Analysis for Cognitive Science: A Practical Course. New York, NY: Cambridge University Press; 2013.

    • Search Google Scholar
    • Export Citation
  • 28.

    Ly A, Verhagen J, Wagenmakers EJ. Harold Jeffreys’s default Bayes factor hypothesis tests: explanation, extension, and application in psychology. J Math Psychol. 2016;72:1932. doi:10.1016/j.jmp.2015.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen J, Rozeboom W, Dawes R, Wainer H. Things I have learned (so far). Am Psychol. 1990;45:13041312. doi:10.1037/0003-066X.45.12.1304

  • 30.

    Douglas J, Pearson S, Ross A, McGuigan M. Eccentric exercise: physiological characteristics and acute responses. Sports Med. 2017;47:663675. doi:10.1007/s40279-016-0624-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mike JN, Cole N, Herrera C, Vandusseldorp T, Kravitz L, Kerksick CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res. 2017;31:773786. PubMed ID: 27787464 doi:10.1519/JSC.0000000000001675

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 295 295 104
Full Text Views 23 23 2
PDF Downloads 24 24 0