Influence of Maturation Status on Eccentric Hamstring Strength Improvements in Youth Male Soccer Players After the Nordic Hamstring Exercise

Click name to view affiliation

Benjamin Drury
Search for other papers by Benjamin Drury in
Current site
Google Scholar
PubMed
Close
,
Thomas Green
Search for other papers by Thomas Green in
Current site
Google Scholar
PubMed
Close
,
Rodrigo Ramirez-Campillo
Search for other papers by Rodrigo Ramirez-Campillo in
Current site
Google Scholar
PubMed
Close
, and
Jason Moran
Search for other papers by Jason Moran in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: This study examined the effects of a 6-week Nordic hamstring exercise (NHE) program in youth male soccer players of less mature (pre–peak height velocity [PHV]) or more mature (mid/post-PHV) status. Methods: Forty-eight participants were separated into pre-PHV (11.0 [0.9] y) or mid/post-PHV (13.9 [1.1]) groups and further divided into experimental (EXP) and control groups with eccentric hamstring strength assessed (NordBord) both before and after the training program. Participants in the EXP groups completed a periodized NHE program performed once or twice weekly over a 6-week period. Results: The NHE program resulted in moderate and small increases in relative eccentric hamstring strength (in newtons per kilogram) in the pre-PHV EXP (d = 0.83 [0.03–1.68]) and mid-PHV EXP (d = 0.53 [−0.06 to 1.12]) groups, respectively. Moderate increases in the same measure were also seen in the between-groups analyses in the pre-PHV (d = 1.03 [0.23–1.84]) and mid-PHV (d = 0.87 [0.22–1.51]) groups, with a greater effect observed in the former. Conclusion: The results from this study demonstrate that a 6-week NHE program can improve eccentric hamstring strength in male youth soccer players, with less-mature players achieving mostly greater benefits. The findings from this study can aid in the training prescription of NHE in youth male soccer players.

Drury is with the Dept of Applied Sport Sciences, Hartpury University, Hartpury, United Kingdom. Green is with the Dept of Physical Education, St Peter’s RC High School, Gloucester, United Kingdom. Ramirez-Campillo is with the Laboratory of Human Performance, Quality of Life and Wellness Research Group, Dept of Physical Activity Sciences, University of Los Lagos, Osorno, Chile. Moran is with the School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom.

Drury (ben.drury@hartpury.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Johnson A, Doherty P, Freemont A. Investigation of growth, development, and factors associated with injury in elite schoolboy footballers: prospective study. BMJ. 2009;338(1):b490. doi:10.1136/bmj.b490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Read PJ, Oliver JL, De Ste Croix MB, Myer GD, Lloyd RS. An audit of injuries in six English professional soccer academies. J Sports Sci. 2018;36(13):15421548. PubMed ID: 29125037 doi:10.1080/02640414.2017.1402535

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rössler R, Junge A, Chomiak J, et al. Risk factors for football injuries in young players aged 7 to 12 years. Scand J Med Sci Sports. 2018;28(3):11761182. doi:10.1111/sms.2018.28.issue-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bizzini M, Junge A, Dvorak J. Implementation of the FIFA 11+ football warm up program: how to approach and convince the Football associations to invest in prevention. Br J Sports Med. 2013;47:803806. PubMed ID: 23813485 doi:10.1136/bjsports-2012-092124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Owoeye OB, Akinbo SR, Tella BA, Olawale OA. Efficacy of the FIFA 11+ warm-up program in male youth football: a cluster randomised controlled trial. J Sports Sci Med. 2014;13(2), 321328. PubMed ID: 24790486

    • Search Google Scholar
    • Export Citation
  • 6.

    van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programs halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53:13621370. PubMed ID: 30808663 doi:10.1136/bjsports-2018-100045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):15241535. PubMed ID: 26675089 doi:10.1136/bjsports-2015-095362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Grooms D, Palmer T, Onate J, Myer G, Grindstaff T. Soccer-specific warm-up and lower extremity injury rates in collegiate male soccer players. J Athl Train. 2013;48(6):782789. PubMed ID: 23848519 doi:10.4085/1062-6050-48.4.08

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    van der Horst N, Smits D, Petersen J, Goedhart E, Backx F. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):13161323. PubMed ID: 25794868 doi:10.1177/0363546515574057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gatterer H, Lorenzi D, Ruedl G, Burtscher M. The“ FIFA 11+” injury prevention program improves body stability in child (10 year old) soccer players. Biol Sport. 2018;35(2):153158. PubMed ID: 30455543

    • Search Google Scholar
    • Export Citation
  • 11.

    Read PJ, Jimenez P, Oliver J, Lloyd R. Injury prevention in male youth soccer: current practices and perceptions of practitioners working at elite English academies. J Sports Sci. 2018;36(12):14231431. PubMed ID: 29019743 doi:10.1080/02640414.2017.1389515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kilding AE, Tunstall H, Kuzmic D. Suitability of FIFA’s “The 11” training program for young football players—impact on physical performance. J Sports Sci Med. 2008;7(3):320326. PubMed ID: 24149898

    • Search Google Scholar
    • Export Citation
  • 13.

    Tansel RB, Salci Y, Yildirim A, Kocak S, Korkusuz PF. Effects of eccentric hamstring strength training on lower extremity strength of 10–12 year old male basketball players. Isokinet Exerc Sci. 2008;16(2):8185. doi:10.3233/IES-2008-0300

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Pearson D, Naughton G, Torode M. Predictability of physiological testing and the role of maturation in talent identification for adolescent team sports. J Sci Med Sport. 2006;9(4):277287. PubMed ID: 16844415 doi:10.1016/j.jsams.2006.05.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Moran J, Parry D, Lewis I, Collison J, Rumpf M, Sandercock G. Maturation-related adaptations in running speed in response to sprint training in youth soccer players. J Sci Med Sport. 2018;21(5):538542. PubMed ID: 28964690 doi:10.1016/j.jsams.2017.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Asadi A, Ramirez-Campillo R, Arazi H, Sáez de Villarreal E. Effects of maturation on jumping ability and sprint adaptations to plyometric training in youth soccer players. J Sports Sci. 2018;36(21):24052411. PubMed ID: 29611771 doi:10.1080/02640414.2018.1459151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Vera-Assaoka T, Ramirez-Campillo R, Alvarez C, et al. Effects of maturation on physical fitness adaptations to plyometric drop jump training in male youth soccer players [published online ahead of print April 3, 2019]. J Strength Cond Res. doi:10.1519/JSC.0000000000003151

    • Search Google Scholar
    • Export Citation
  • 18.

    Moran J, Sandercock GR, Ramírez-Campillo R, Meylan C, Collison J, Parry DA. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J Sports Sci. 2017;35(11):10411051. PubMed ID: 27454545 doi:10.1080/02640414.2016.1209306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Moran J, Sandercock G, Ramírez-Campillo R, et al. Maturation-related differences in adaptations to resistance training in young male swimmers. J Strength Cond Res. 2018;32(1):139149. PubMed ID: 28118309 doi:10.1519/JSC.0000000000001780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mirwald RG, Baxter-Jones A, Bailey D, Beunen G. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689694. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Moran J, Sandercock GR, Ramirez-Campillo R, Todd O, Collinson J, Parry DA. Maturation-related effect of low-dose plyometric training on performance in youth hockey players. Pediatr Exerc Sci. 2017;29(2):194202. PubMed ID: 27834619 doi:10.1123/pes.2016-0151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Opar D, Piatkowski T, Williams M, Shield A. A novel device using the Nordic hamstring exercise to assess eccentric hamstring strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636640. PubMed ID: 23886674 doi:10.2519/jospt.2013.4837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ramirez-Campillo R, Alvarer C, García-Pinillos F, et al. Optimal reactive strength index: is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J Strength Cond Res. 2018;32(4):885893. PubMed ID: 29389692 doi:10.1519/JSC.0000000000002467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Dai Sugimoto GD, Bush HM, Hewett TE. Effects of compliance on trunk and hip integrative neuromuscular training on hip abductor strength in female athletes. J Strength Cond Res. 2014;28(5):11871194. doi:10.1097/JSC.0000000000000228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Freeman BW, Young WB, Talpey SW, Smyth AM, Pane CL, Carlon TA. The effects of sprint training and the Nordic hamstring exercise on eccentric hamstring strength and sprint performance in adolescent athletes. J Sports Med Phys. 2019;59(7):11191125.

    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Spencer M, Fitzsimons M, Dawson B, Bishop D, Goodman C. Reliability of a repeated-sprint test for field-hockey. J Sci Med Sport. 2006;9(1–2):181184. doi:10.1016/j.jsams.2005.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience. 2007;11:1620.

    • Search Google Scholar
    • Export Citation
  • 29.

    Mjølsnes R, Arnason A, Østhagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14(5):311317. doi:10.1046/j.1600-0838.2003.367.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Iga J, Fruer CS, Deighan M, Croix MD, James DV. ‘Nordic’ hamstrings exercise—engagement characteristics and training responses. Int J Sports Med. 2012;33(12):10001004. PubMed ID: 22895870 doi:10.1055/s-00000028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lovell R, Knox M, Weston M, Siegler JC, Brennan S, Marshall PW. Hamstring injury prevention in soccer: before or after training? Scand J Med Sci Sports. 2018;28(2):658666. PubMed ID: 28544170 doi:10.1111/sms.2018.28.issue-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663672. PubMed ID: 26754149 doi:10.1007/s00421-015-3325-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lacome M, Avrillon S, Cholley Y, Simpson BM, Guilhem G, Buchheit M. Hamstring eccentric strengthening program: does training volume matter? Int J Sports Physiol Perform. 2020;15(1):8190. doi:10.1123/ijspp.2018-0947

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Deli CK, Fatouros IG, Paschalis V, et al. A comparison of exercise-induced muscle damage following maximal eccentric contractions in men and boys. Pediatr Exerc Sci. 2017;29(3):316325. PubMed ID: 28165870 doi:10.1123/pes.2016-0185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Chen TC, Chen HL, Liu YC, Nosaka K. Eccentric exercise-induced muscle damage of pre-adolescent and adolescent boys in comparison to young men. Eur J Appl Physiol. 2014;114(6):11831195. PubMed ID: 24563093 doi:10.1007/s00421-014-2848-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Buchheit M, Cholley Y, Nagel M, Poulos N. The effect of body mass on eccentric hamstring strength assessed with an instrumented Nordic hamstring device (Nordbord) in football players. Int J Sports Physiol Perform. 2016;11(6):721726. PubMed ID: 26638728 doi:10.1123/ijspp.2015-0513

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Meylan CM, Cronin JB, Oliver JL, Hopkins WG, Contreras B. The effect of maturation on adaptations to strength training and detraining in 11–15-year-olds. Scand J Med Sci Sports 2014;24(3):e156e164. doi:10.1111/sms.2014.24.issue-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Rumpf MC, Cronin JB, Mohamad IN, Mohamad S, Oliver JL, Hughes MG. The effect of resisted sprint training on maximum sprint kinetics and kinematics in youth. Eur J Sport Sci. 2015;15(5):374381. PubMed ID: 25190489 doi:10.1080/17461391.2014.955125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Read P, Oliver JL, De Ste Croix MB, Myer GD, Lloyd RS. Landing kinematics in elite male youth soccer players of different chronologic ages and stages of maturation. J Athl Train. 2018;53(4):372378. PubMed ID: 29693423 doi:10.4085/1062-6050-493-16

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Pollard CW, Opar DA, Williams MD, Bourne MN, Timmins RG. Razor hamstring curl and Nordic hamstring exercise architectural adaptations: impact of exercise selection and intensity. Scand J Med Sci Sports. 2019;29(5):706715. PubMed ID: 30629773 doi:10.1111/sms.2019.29.issue-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Monajati A, Larumbe-Zabala E, Goss-Sampson M, Naclerio F. Analysis of the hamstring muscle activation during two injury prevention exercises. J Hum Kinet. 2017;60(1):2937. doi:10.1515/hukin-2017-0105

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Moran J, Sandercock GR, Ramírez-Campillo R, Meylan CM, Collison JA, Parry DA. Age-related variation in male youth athletes’ countermovement jump after plyometric training: a meta-analysis of controlled trials. J Strength Cond Res. 2017;31(2):552565. PubMed ID: 28129282 doi:10.1519/JSC.0000000000001444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4368 891 78
Full Text Views 118 36 4
PDF Downloads 116 22 0