Acute and Short-Term Response to Different Loading Conditions During Resisted Sprint Training

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To analyze the acute and short-term physical and metabolic responses to resisted sprint training with 5 different loading conditions (0%, 20%, 40%, 60%, and 80% body mass). Methods: Fifteen male participants performed 8 × 20-m sprints with 2-minute rests between sprints with 5 different loading conditions. Subjects performed a battery of tests (creatine kinase and lactate concentrations, countermovement jump, 20-m sprint, and isokinetic knee extension and flexion contractions) at 3 different time points (preexercise [PRE], postexercise [POST], and 24-h postexercise [POST24H]). Results: Results revealed significant increases in blood lactate for all loading conditions; however, as sled loadings increased, higher blood lactate concentrations and increments in sprint times during the training session were observed. Significant increases in creatine kinase concentration were observed from PRE to POST24H for all loading conditions. Concerning physical performance, significant decreases in countermovement-jump height from PRE to POST were found for all loading conditions. In addition, significant decreases in 20-m sprint performance from PRE to POST were observed for 0% (P = .05) and 80% (P = .02). No significant differences with PRE were observed for the physical-performance variables at POST24H, except for 20% load, which induced a significant decrease in mean power during knee flexion (P = .03). Conclusions: These results suggest that the higher the load used during resisted sprint training, the higher the physical-performance impairments and metabolic response produced, although all loading conditions led to a complete recovery of sprint performance at POST24H.

Bachero-Mena, Sánchez-Moreno, and Sañudo are with the Dept of Physical Education and Sport, University of Seville, Seville, Spain. Pareja-Blanco is with the Dept of Sports, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain.

Bachero-Mena (beatriz.bachero@hotmail.com) is corresponding author.
  • 1.

    Cronin J, Hansen KT. Resisted sprint training for the acceleration phase of sprinting. Strength Cond J. 2006;28(4):3839. doi:10.1519/00126548-200608000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Monte A, Nardello F, Zamparo P. Sled towing: the optimal overload for peak power production. Int J Sports Physiol Perform. 2017;12(8):10521058. PubMed ID: 27967284 doi:10.1123/ijspp.2016-0602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kawamori N, Newton R, Nosaka K. Effects of weighted sled towing on ground reaction force during the acceleration phase of sprint running. J Sports Sci. 2014;32(12):11391145. PubMed ID: 24576071 doi:10.1080/02640414.2014.886129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bachero-Mena B, González-Badillo JJ. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass. J Strength Cond Res. 2014;28(10):29542960. PubMed ID: 24736770 doi:10.1519/JSC.0000000000000492

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Alcaraz PE, Carlos-Vivas J, Oponjuru BO, Martinez-Rodriguez A. The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis. Sports Med. 2018;48(9):21432165. PubMed ID: 29926369 doi:10.1007/s40279-018-0947-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bogdanis GC, Nevill ME, Lakomy HKA, Boobis LH. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand. 1998;163:261272. PubMed ID: 9715738 doi:10.1046/j.1365-201x.1998.00378.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hirvonen J, Rehunen S, Rusko H, Härkönen M. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol. 1987;56:253259. doi:10.1007/BF00690889

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Balsom PD, Seger JY, Sjodin B, Ekblom B. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med. 1992;13:528533. PubMed ID: 1459748 doi:10.1055/s-2007-1021311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sjodin B, Hellsten Westing Y, Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med. 1990;10:236254. PubMed ID: 2247725 doi:10.2165/00007256-199010040-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Thorstensson A, Sjodin B, Karlsson J. Enzyme activities and muscle strength after ‘sprint training’ in man. Acta Physiol Scand. 1975;94:313318. PubMed ID: 170792 doi:10.1111/j.1748-1716.1975.tb05891.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287332. PubMed ID: 18195089 doi:10.1152/physrev.00015.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jimenez-Reyes P, Pareja-Blanco F, Cuadrado-Peñafiel V, Morcillo J, Párraga J, González-Badillo J. Mechanical, metabolic and perceptual response during sprint training. Int J Sports Med. 2016;37(10):807812. PubMed ID: 27286181 doi:10.1055/s-0042-107251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jiménez-Reyes P, Pareja-Blanco F, Cuadrado-Peñafiel V, Ortega-Becerra M, Párraga J, González-Badillo JJ. Jump height loss as an indicator of fatigue during sprint training. J Sports Sci. 2019;37(9):10291037. doi:10.1080/02640414.2018.1539445

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):17251789. PubMed ID: 11581501 doi:10.1152/physrev.2001.81.4.1725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gorostiaga EM, Asiain X, Izquierdo M, et al. Vertical jump performance and blood ammonia and lactate levels during typical training sessions in elite 400-m runners. J Strength Cond Res. 2010;24(4):11381149. PubMed ID: 20300013 doi:10.1519/JSC.0b013e3181cf769f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Morcillo JA, Jimenez-Reyes P, Cuadrado-Penafiel V, Lozano E, Ortega-Becerra M, Parraga J. Relationships between repeated sprint ability, mechanical parameters, and blood metabolites in professional soccer players. J Strength Cond Res. 2015;29(6):16731682. PubMed ID: 25463691 doi:10.1519/JSC.0000000000000782

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Howatson G, Milak A. Exercise-induced muscle damage following a bout of sport specific repeated sprints. J Strength Cond Res. 2009;23:24192424. PubMed ID: 19826279 doi:10.1519/JSC.0b013e3181bac52e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Keane KM, Salicki R, Goodall S, Thomas K, Howatson G. Muscle damage response in female collegiate athletes after repeated sprint activity. J Strength Cond Res. 2015;29(10):28022807. PubMed ID: 25853920 doi:10.1519/JSC.0000000000000961

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Leeder JD, van Someren KA, Gaze D, et al. Recovery and adaptation from repeated intermittent-sprint exercise. Int J Sports Physiol Perform. 2014;9(3):489496. doi:10.1123/ijspp.2012-0316

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Petrakos G, Morin JB, Egan B. Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med. 2016;46(3):381400. PubMed ID: 26553497 doi:10.1007/s40279-015-0422-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Alcaraz PE, Palao JM, Elvira JL. Determining the optimal load for resisted sprint training with sled towing. J Strength Cond Res. 2009;23(2):480485. PubMed ID: 19197200 doi:10.1519/JSC.0b013e318198f92c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lockie RG, Murphy AJ, Spinks CD. Effects of resisted sled towing on sprint kinematics in field-sport athletes. J Strength Cond Res. 2003;17(4):760767. PubMed ID: 14636109

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Spinks CD, Murphy AJ, Spinks WL, Lockie RG. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players. J Strength Cond Res. 2007;21(1):7785. PubMed ID: 17313259 doi:10.1519/00124278-200702000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cross MR, Brughelli M, Samozino P, Brown SR, Morin JB. Optimal loading for maximizing power during sled-resisted sprinting. Int J Sports Physiol Perform. 2017;12(8):10691077. PubMed ID: 28051333 doi:10.1123/ijspp.2016-0362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Morin JB, Petrakos G, Jimenez-Reyes P, Brown SR, Samozino P, Cross MR. Very-heavy sled training for improving horizontal force output in soccer players. Int J Sports Physiol Perform. 2017;12(6):840844. PubMed ID: 27834560 doi:10.1123/ijspp.2016-0444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Haugen TA, Breitschädel F, Seiler S. Sprint mechanical variables in elite athletes: are force-velocity profiles sport specific or individual? PLoS One. 2019;14(7):e0215551. PubMed ID: 31339890 doi:10.1371/journal.pone.0215551

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Alcaraz PE, Palao JM, Elvira JL, Linthorne NP. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. J Strength Cond Res. 2008;22(3):890897. PubMed ID: 18438225 doi:10.1519/JSC.0b013e31816611ea

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Martinez-Valencia MA, Romero-Arenas S, Elvira JL, Gonzalez-Rave JM, Navarro-Valdivielso F, Alcaraz PE. Effects of sled towing on peak force, the rate of force development and sprint performance during the acceleration phase. J Hum Kinet. 2015;46(1):139148. doi:10.1515/hukin-2015-0042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Maulder PS, Bradshaw EJ, Keogh JWL. Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks. J Strength Cond Res. 2008;22(6):19922002. PubMed ID: 18978610 doi:10.1519/JSC.0b013e31818746fe

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Horder M, Jørgensen P, Hafkenscheid JCM, et al. Creatine kinase determination: a European evaluation of the creatine kinase determination in serum, plasma and whole blood with the Reflotron® system. Eur J Clin Chem Biochem. 1991;29:691696.

    • Search Google Scholar
    • Export Citation
  • 31.

    Bonaventura JM, Sharpe K, Knight E, Fuller KL, Tanner RK, Gore CJ. Reliability and accuracy of six hand-held blood lactate analysers. J Sport Sci Med. 2015;14(1):203214.

    • Search Google Scholar
    • Export Citation
  • 32.

    Fitzsimons M, Dawson B, Ware D, Wilkinson A. Cycling and running tests of repeated sprint ability. Aust J Sci Med Sport. 1993;25:8287.

    • Search Google Scholar
    • Export Citation
  • 33.

    Glaister M, Howatson G, Pattison JR, McInnes G. The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited. J Strength Cond Res. 2008;22(5):15971601. PubMed ID: 18714226 doi:10.1519/JSC.0b013e318181ab80

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Morin JB, Samozino P, Edouard P, Tomazin K. Effect of fatigue on force production and force application technique during repeated sprints. J Biomech. 2011;44(15):27192723. PubMed ID: 21839456 doi:10.1016/j.jbiomech.2011.07.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Whelan N, O’Regan C, Harrison AJ. Resisted sprints do not acutely enhance sprinting performance. J Strength Cond Res. 2014;28(7):18581866. PubMed ID: 24378662 doi:10.1519/JSC.0000000000000357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Winwood PW, Posthumus LR, Cronin JB, Keogh JW. The acute potentiating effects of heavy sled pulls on sprint performance. J Strength Cond Res. 2016;30(5):12481254. PubMed ID: 26439786 doi:10.1519/JSC.0000000000001227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability – part I: factors contributing to fatigue. Sports Med. 2011;41:673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bentley I, Sinclair JK, Atkins SJ, Metcalfe J, Edmundson CJ. Effect of velocity-based loading on acceleration kinetics and kinematics during sled towing [published online ahead of print October 05, 2018]. J Strength Cond Res.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Morin JB, Gimenez P, Edouard P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed ID: 26733889 doi:10.3389/fphys.2015.00404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 267 267 30
Full Text Views 21 21 2
PDF Downloads 23 23 3