Pacing and Performance in Swimming: Differences Between Individual and Relay Events

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Although pacing is considered crucial for success in individual swimming events, there is a lack of research examining pacing in relays. The authors investigated the impact of start lap and pacing strategy on swimming performance and whether these strategies differ between relays and the corresponding individual event. Methods: Race data for 716 relay (4 × 200-m freestyle) finals from 14 international competitions between 2010 and 2018 were analyzed retrospectively. Each swimmer’s individual 200-m freestyle season’s best time for the same year was used for comparison. Races were classified as a fast, average, or slow start lap strategy (lap 1) and as an even, negative, or positive pacing strategy (laps 2–4) to give an overall race strategy, for example, average start lap even pacing. Results: A fast start lap strategy was associated with slower 200-m times (range 0.5–0.9 s, P ≤ .04) irrespective of gender, and positive pacing led to slower 200-m (0.4–0.5 s, P ≤ .03) times in females. A fast start lap strategy led to positive pacing in 71% of swimmers. Half of the swimmers changed pacing strategy, with 13% and 7% more female and male swimmers, respectively, displaying positive pacing in relays compared with individual events. In relays, a fast start lap and positive pacing was utilized more frequently by swimmers positioned on second to fourth relay legs (+13%) compared with lead-off leg swimmers (+3%). Conclusion: To maximize performance, swimmers should be more conservative in the first lap and avoid unnecessary alterations in race strategy in relay events.

McGibbon, Thompson, and Pyne are with the Research Inst for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, ACT, Australia. McGibbon and Shephard are with the Queensland Academy of Sport, Brisbane, QLD, Australia. Osborne is with Swimming Australia Ltd, Brisbane, QLD, Australia. Thompson is with New South Wales Inst of Sport, Sydney, NSW, Australia.

McGibbon (katie.mcgibbon@canberra.edu.au) is corresponding author.
  • 1.

    McGibbon KE, Pyne DB, Shephard ME, Thompson KG. Pacing in swimming: a systematic review. Sports Med. 2018;48(7):16211633. PubMed ID: 29560605 doi:10.1007/s40279-018-0901-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239252. PubMed ID: 18278984 doi:10.2165/00007256-200838030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Thompson KG. Pacing—Individual Strategies for Optimal Performance. Champaign, IL: Human Kinetics; 2015.

  • 4.

    Hüffmeier J, Krumm S, Kanthak J, Hertel G. “Don’t let the group down”: facets of instrumentality moderate the motivating effects of groups in a field experiment. Eur J Soc Psychol. 2012;42(5):533538. doi:10.1002/ejsp.1875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Skorski S, Etxebarria N, Thompson KG. Breaking the myth that relay swimming is faster than individual swimming. Int J Sports Physiol Perform. 2016;11(3):410413. doi:10.1123/ijspp.2014-0577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Saavedra JM, Garcia-Hermoso A, Escalante Y, Dominguez AM, Arellano R, Navarro F. Relationship between exchange block time in swim starts and final performance in relay races in international championships. J Sports Sci. 2014;32(19):17831789. PubMed ID: 24857307 doi:10.1080/02640414.2014.920099

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kibele A, Fischer S. Relay starts in swimming—a review of related issues. In: Fernandes RJ, ed. The Science of Swimming and Aquatic Activities. New York, NY: Nova; 2018:5978.

    • Search Google Scholar
    • Export Citation
  • 8.

    McLean SP, Holthe MJ, Vint PF, Beckett KD, Hinrichs RN. Addition of an approach to a swimming relay start. J Appl Biomech. 2000;16(4):342355. doi:10.1123/jab.16.4.342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Williams KD, Nida SA, Baca LD, Latane B. Social loafing and swimming—effects of identifiability on individual and relay performance of intercollegiate swimmers. Basic Appl Soc Psych. 1989;10(1):7381. doi:10.1207/s15324834basp1001_7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Skorski S, Faude O, Caviezel S, Meyer T. Reproducibility of pacing profiles in elite swimmers. Int J Sports Physiol Perform. 2014;9(2):217225. doi:10.1123/ijspp.2012-0258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mitchell LJG, Rattray B, Saunders PU, Pyne DB. The relationship between talent identification testing parameters and performance in elite junior swimmers. J Sci Med Sport. 2018;21(12):12811285. PubMed ID: 29804652 doi:10.1016/j.jsams.2018.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):148. doi:10.18637/jss.v067.i01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    R Core Group. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.

  • 14.

    Bretz F, Hothorn T, Westfall P. Multiple Comparisons Using R. New York, NY: Chapman and Hall; 2011.

  • 15.

    Pyne DB, Trewin CB, Hopkins WG. Progression and variability of competitive performance of Olympic swimmers. J Sports Sci. 2004;22(7):613620. PubMed ID: 15370491 doi:10.1080/02640410310001655822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bailey SJ, Vanhatalo A, DiMenna FJ, Wilkerson DP, Jones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43(3):457467. PubMed ID: 20689463 doi:10.1249/MSS.0b013e3181ef3dce

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med Sci Sports Exerc. 2002;34(6):10411047. PubMed ID: 12048335 doi:10.1097/00005768-200206000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Murray J, McCrudden M, Murias JM, Nolte V, Belfry GR. Differing six minute pacing strategies affect anaerobic contribution, oxygen uptake, muscle deoxygenation and cycle performance. J Sports Med Phys Fitness. 2018;58(1–2):1726. PubMed ID: 27991483

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mattern CO, Kenefick RW, Kertzer R, Quinn TJ. Impact of starting strategy on cycling performance. Int J Sports Med. 2001;22(5):350355. PubMed ID: 11510871 doi:10.1055/s-2001-15644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Garland SW. An analysis of the pacing strategy adopted by elite competitors in 2000 m rowing. Br J Sports Med. 2005;39(1):3942. PubMed ID: 15618339 doi:10.1136/bjsm.2003.010801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Barbosa TM, Bragada JA, Reis VM, Marinho DA, Carvalho C, Silva AJ. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sport. 2010;13(2):262269. PubMed ID: 19409842 doi:10.1016/j.jsams.2009.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    De Koning JJ, Foster C, Lucia A, Bobbert MF, Hettinga FJ, Porcari JP. Using modeling to understand how athletes in different disciplines solve the same problem: swimming versus running versus speed skating. Int J Sports Physiol Perform. 2011;6(2):276280. PubMed ID: 21725112 doi:10.1123/ijspp.6.2.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Mauger AR, Neuloh J, Castle PC. Analysis of pacing strategy selection in elite 400-m freestyle swimming. Med Sci Sports Exerc. 2012;44(11):22052212. PubMed ID: 22648344 doi:10.1249/MSS.0b013e3182604b84

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Thompson KG, Haljand R, MacLaren DP. An analysis of selected kinematic variables in national and elite male and female 100-m and 200-m breaststroke swimmers. J Sports Sci. 2000;18(6):421431. PubMed ID: 10902677 doi:10.1080/02640410050074359

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Thompson KG, MacLaren DP, Lees A, Atkinson G. The effect of even, positive and negative pacing on metabolic, kinematic and temporal variables during breaststroke swimming. Eur J Appl Physiol. 2003;88(4–5):438443. PubMed ID: 12527975 doi:10.1007/s00421-002-0715-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Viana BF, Pires FO, Inoue A, Santos TM. Pacing strategy during simulated mountain bike racing. Int J Sports Physiol Perform. 2018;13(2):208213. doi:10.1123/ijspp.2016-0692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Losnegard T, Kjeldsen K, Skattebo O. An analysis of the pacing strategies adopted by elite cross-country skiers. J Strength Cond Res. 2016;30(11):32563260. PubMed ID: 26982973 doi:10.1519/JSC.0000000000001424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Stoggl T, Pellegrini B, Holmberg HC. Pacing and predictors of performance during cross-country skiing races: a systematic review. J Sport Health Sci. 2018;7(4):381393. PubMed ID: 30450246 doi:10.1016/j.jshs.2018.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Siders W. Competitive swimming relay exchange times: a descriptive study. Int J Sports Sci Coach. 2010;5(3):381387. doi:10.1260/1747-9541.5.3.381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Skorski S, Faude O, Rausch K, Meyer T. Reproducibility of pacing profiles in competitive swimmers. Int J Sports Med. 2013;34(2):152157. PubMed ID: 22972249

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Murach KA, Bagley JR. Less is more: the physiological basis for tapering in endurance, strength, and power athletes. Sports. 2015;3(3):209218. doi:10.3390/sports3030209

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 429 429 113
Full Text Views 40 40 7
PDF Downloads 18 18 3