Transferable Benefits of Cycle Hypoventilation Training for Run-Based Performance in Team-Sport Athletes

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: To determine whether high-intensity training with voluntary hypoventilation at low lung volume (VHL) in cycling could improve running performance in team-sport athletes. Methods: Twenty well-fit subjects competing in different team sports completed, over a 3-week period, 6 high-intensity training sessions in cycling (repeated 8-s exercise bouts at 150% of maximal aerobic power) either with VHL or with normal breathing conditions. Before (Pre) and after (Post) training, the subjects performed a repeated-sprint-ability test (RSA) in running (12 × 20-m all-out sprints), a 200-m maximal run, and the Yo-Yo Intermittent Recovery Level 1 test (YYIR1). Results: There was no difference between Pre and Post in the mean and best velocities reached in the RSA test, as well as in performance and maximal blood lactate concentration in the 200-m-run trial in both groups. On the other hand, performance was greater in the second part of the RSA test, and the fatigue index of this test was lower (5.18% [1.3%] vs 7.72% [1.6%]; P < .01) after the VHL intervention only. Performance was also greater in the YYIR1 in the VHL group (1468 [313] vs 1111 [248] m; P < .01), whereas no change occurred in the normal-breathing-condition group. Conclusion: This study showed that performing high-intensity cycle training with VHL could improve RSA and possibly endurance performance in running. On the other hand, this kind of approach does not seem to induce transferable benefits for anaerobic performance.

Woorons is with Université de Lille, Université d’Artois, Université du Littoral Côte d’Opale, EA 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France. Billaut is with the Dept of Kinesiology, Université Laval, Quebec, QC, Canada. Vandewalle is with the UFR de Sante, Médecine et Biologie Humaine, Université Paris 13, Bobigny, France. Woorons is also with the Association for Research and Promotion of Hypoventilation Training (ARPEH), Lille, France.

Woorons (xavier.woorons@gmail.com) is corresponding author.
  • 1.

    Carling C. Interpreting physical performance in professional soccer match-play: should we be more pragmatic in our approach? Sports Med. 2013;43:655663. PubMed ID: 23661303 doi:10.1007/s40279-013-0055-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I. Sports Med. 2011;41:673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—part II. Sports Med. 2011;41:741756. PubMed ID: 21846163 doi:10.2165/11590560-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Brocherie F, Girard O, Faiss R, Millet GP. Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med. 2017;47:16511660. PubMed ID: 28194720 doi:10.1007/s40279-017-0685-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brocherie F, Girard O, Faiss R, Millet GP. High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players. J Strength Cond Res. 2015;29:226237. PubMed ID: 24978836 doi:10.1519/JSC.0000000000000590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Galvin HM, Cooke K, Sumners DP, Mileva KN, Bowtell JL. Repeated sprint training in normobaric hypoxia. Br J Sports Med. 2013;47:i74i79. PubMed ID: 24282212 doi:10.1136/bjsports-2013-092826

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Goods PS, Dawson B, Landers GJ, Gore CJ, Peeling P. No additional benefit of repeat-sprint training in hypoxia than in normoxia on sea-level repeat-sprint ability. J Sports Sci Med. 2015;14:681688. PubMed ID: 26336357

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Faiss R, Léger B, Vesin JM, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One. 2013;8:e56522. PubMed ID: 23437154 doi:10.1371/journal.pone.0056522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Faiss R, Willis S, Born D, et al. Repeated double-poling sprint training in hypoxia by competitive cross-country skiers. Med Sci Sports Exerc. 2015;47:809817. PubMed ID: 25083727 doi:10.1249/MSS.0000000000000464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40:125. PubMed ID: 20020784 doi:10.2165/11317920-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Millet GP, Girard O, Beard A, Brocherie F. Repeated sprint training in hypoxia—an innovative method. Dtsch Z Sportmed. 2019;2019:115122. doi:10.5960/dzsm.2019.374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Girard O, Brocherie F, Millet GP. Effects of altitude/hypoxia on single- and multiple-sprint performance: a comprehensive review. Sports Med. 2017;47:19311949. PubMed ID: 28451905 doi:10.1007/s40279-017-0733-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fornasier-Santos C, Millet GP, Woorons X. Repeated-sprint training in hypoxia induced by voluntary hypoventilation improves running repeated-sprint ability in rugby players. Eur J Sport Sci. 2018;18:504512. PubMed ID: 29400616 doi:10.1080/17461391.2018.1431312

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Trincat L, Woorons X, Millet GP. Repeated-sprint training in hypoxia induced by voluntary hypoventilation in swimming. Int J Sports Physiol Perform. 2017;12:329335 . PubMed ID: 27294771 doi:10.1123/ijspp.2015-0674

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Woorons X, Millet GP, Mucci P. Physiological adaptations to repeated sprint training in hypoxia induced by voluntary hypoventilation at low lung volume. Eur J Appl Physiol. 2019;119(9):19591970. PubMed ID: 31286240 doi:10.1007/s00421-019-04184-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Woorons X, Bourdillon N, Lamberto C, et al. Cardiovascular responses during hypoventilation at exercise. Int J Sports Med. 2011;32:438445. PubMed ID: 21563023 doi:10.1055/s-0031-1271788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Convertino VA. Mechanisms of inspiration that modulate cardiovascular control: the other side of breathing. J Appl Physiol. 2019;127(5):11871196. PubMed ID: 31225967 doi:10.1152/japplphysiol.00050.2019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kjeld T, Stride N, Gudiksen A, et al. Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold divers. PLoS One. 2018;13:e0201401. PubMed ID: 30231055 doi:10.1371/journal.pone.0201401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Woorons X, Mucci P, Aucouturier J, Anthierens A, Millet GP. Acute effects of repeated cycling sprints in hypoxia induced by voluntary hypoventilation. Eur J Appl Physiol. 2017;117:24332443. PubMed ID: 29032393 doi:10.1007/s00421-017-3729-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Billat V, Faina M, Sardella F, et al. A comparison of time to exhaustion at VO2max in elite cyclists, kayak paddlers, swimmers and runners. Ergonomics. 1996;39:267277. PubMed ID: 8851531 doi:10.1080/00140139608964457

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15:109115. PubMed ID: 11708692

  • 22.

    Glaister M, Howatson G, Pattison JR, McInnes G. The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited. J Strength Cond Res. 2008;22:15971601. PubMed ID: 18714226 doi:10.1519/JSC.0b013e318181ab80

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Castagna C, Impellizzeri FM, Chamari K, Carlomagno D, Rampinini E. Aerobic fitness and yo-yo continuous and intermittent tests performances in soccer players: a correlation study. J Strength Cond Res. 2006;20:320325. PubMed ID: 16689621

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Krustrup P, Mohr M, Amstrup T, et al. The yo-yo intermittent recovery test: physiological response, reliability, and validity. Med Sci Sports Exerc. 2003;35:697705. PubMed ID: 12673156 doi:10.1249/01.MSS.0000058441.94520.32

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gore CJ. Physiological Tests for Elite Athletes. Champaign, IL: Human Kinetics; 2000.

  • 26.

    Woorons X, Dupuy O, Mucci P, Millet GP, Pichon A. Cerebral and muscle oxygenation during repeated shuttle run sprints with hypoventilation. Int J Sports Med. 2019;40:376384. PubMed ID: 30900226 doi:10.1055/a-0836-9011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Billaut F, Buchheit M. Repeated-sprint performance and vastus lateralis oxygenation: effect of limited O2 availability. Scand J Med Sci Sports. 2013;23:e185e193. PubMed ID: 23362832 doi:10.1111/sms.12052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38:3751. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Bassett Jr DR Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:7084. PubMed ID: 10647532 doi:10.1097/00005768-200001000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Woorons X, Mucci P, Richalet JP, Pichon A. Hypoventilation training at supramaximal intensity improves swimming performance. Med Sci Sports Exerc. 2016;48:11191128. PubMed ID: 26741118 doi:10.1249/MSS.0000000000000863

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hreljac A. Impact and overuse injuries in runners. Med Sci Sports Exerc. 2004;36:845849. PubMed ID: 15126720 doi:10.1249/01.MSS.0000126803.66636.DD

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1584 1220 73
Full Text Views 27 5 0
PDF Downloads 20 5 0