A Comparison of Different Prerace Warm-Up Strategies on 1-km Cycling Time-Trial Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Ischemic preconditioning (IPC) and postactivation potentiation (PAP) are warm-up strategies proposed to improve high-intensity sporting performance. However, only few studies have investigated the benefits of these strategies compared with an appropriate control (CON) or an athlete-selected (SELF) warm-up protocol. Therefore, this study examined the effects of 4 different warm-up routines on 1-km time-trial (TT) performance with competitive cyclists. Methods: In a randomized crossover study, 12 well-trained cyclists (age 32 [10] y, mass 77.7 [4.6] kg, peak power output 1141 [61] W) performed 4 different warm-up strategies—(CON) 17 minutes CON only, (SELF) a self-determined warm-up, (IPC) IPC + CON, or (PAP) CON + PAP—prior to completing a maximal-effort 1-km TT. Performance time and power, quadriceps electromyograms, muscle oxygen saturation (SmO2), and blood lactate were measured to determine differences between trials. Results: There were no significant differences (P > .05) in 1-km performance time between CON (76.9 [5.2] s), SELF (77.3 [6.0] s), IPC (77.0 [5.5] s), or PAP (77.3 [5.9] s) protocols. Furthermore, there were no significant differences in mean or peak power output between trials. Finally, electromyogram activity, SmO2, and recovery blood lactate concentration were not different between conditions. Conclusions: Adding IPC or PAP protocols to a short CON warm-up appears to provide no additional benefit to 1-km TT performance with well-trained cyclists and is therefore not recommended. Furthermore, additional IPC and PAP protocols had no effect on electromyograms and SmO2 values during the TT or peak lactate concentration during recovery.

Vangsoe and Nielsen are with the Section for Sports Science, Dept for Public Health, Aarhus University, Aarhus, Denmark. Paton is with the School of Health and Sport Science, Eastern Inst of Technology, Napier, New Zealand.

Paton (cpaton@eit.ac.nz) is corresponding author.
  • 1.

    McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):15231546. PubMed ID: 26400696 doi:10.1007/s40279-015-0376-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tomaras EK, MacIntosh BR. Less is more: standard warm-up causes fatigue and less warm-up permits greater cycling power output. J Appl Physiol. 2011;111(1):228235. PubMed ID: 21551012 doi:10.1152/japplphysiol.00253.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Munro LA, Stannard SR, Fink PW, Foskett A. Potentiation of sprint cycling performance: the effects of a high-inertia ergometer warm-up. J Sports Sci. 2017;35(14):14421450. PubMed ID: 27483990 doi:10.1080/02640414.2016.1215492

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cruz RS, de Aguiar RA, Turnes T, Salvador AF, Caputo F. Effects of ischemic preconditioning on short-duration cycling performance. Appl Physiol Nutr Metab. 2016;41(8):825831. PubMed ID: 27404398 doi:10.1139/apnm-2015-0646

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lindsay A, Petersen C, Blackwell G, et al. The effect of 1 week of repeated ischaemic leg preconditioning on simulated Keirin cycling performance: a randomised trial. BMJ Open Sport Exerc Med. 2017;3(1):e000229. PubMed ID: 28761713 doi:10.1136/bmjsem-2017-000229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Salvador AF, De Aguiar RA, Lisboa FD, Pereira KL, Cruz RS, Caputo F. Ischemic preconditioning and exercise performance: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2016;11(1):414. PubMed ID: 26218309 doi:10.1123/ijspp.2015-0204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Libonati JR, Howell AK, Incanno NM, Pettee KK, Glassberg HL. Brief muscle hypoperfusion/hyperemia: an ergogenic aid? J Strength Cond Res. 2001;15(3):362366. PubMed ID: 11710666

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Andreas M, Schmid AI, Keilani M, et al. Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. J Cardiovasc Magn Reson. 2011;13:32. PubMed ID: 21718491 doi:10.1186/1532-429X-13-32

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Richard P, Billaut F. Time-trial performance in elite speed skaters after remote ischemic preconditioning. Int J Sports Physiol Perform. 2018;13(10):13081316. PubMed ID: 29745735 doi:10.1123/ijspp.2018-0111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Marocolo IC, da Mota GR, Londe AM, Patterson SD, Barbosa Neto O, Marocolo M. Acute ischemic preconditioning does not influence high-intensity intermittent exercise performance. PeerJ. 2017;5:e4118. PubMed ID: 29204325 doi:10.7717/peerj.4118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Foster GP, Westerdahl DE, Foster LA, Hsu JV, Anholm JD. Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure. Respir Physiol Neurobiol. 2011;179(2–3):248253. doi:10.1016/j.resp.2011.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Incognito AV, Burr JF, Millar PJ. The effects of ischemic preconditioning on human exercise performance. Sports Med. 2016;46(4):531544. PubMed ID: 26645697 doi:10.1007/s40279-015-0433-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Caru M, Levesque A, Lalonde F, Curnier DY. An overview of preconditioning in exercise performance: a systematic review. J Sport Health Sci. 2019;8(4):355369. PubMed ID: 31333890 doi:10.1016/j.jshs.2019.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    DeRenne CE. Effects of postactivation potentiation warm-up in male and female sport performances: a brief review. J Strength Cond Res. 2010;32(6):5864. doi:10.1519/SSC.0b013e3181f412c4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Docherty D, Hodgson MJ. The application of postactivation potentiation to elite sport. Int J Sports Physiol Perform. 2007;2(4):439444. PubMed ID: 19171961 doi:10.1123/ijspp.2.4.439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hodgson M, Docherty D, Robbins D. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 2005;35(7):585595. PubMed ID: 16026172 doi:10.2165/00007256-200535070-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kilduff LP, Bevan H, Kingsley MI, et al. Postactivation potentiation in professional rugby players: optimal recovery. J Strength Cond Res. 2007;21(4):11341138. PubMed ID: 18076243

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Silva RA, Silva-Junior FL, Pinheiro FA, Souza PF, Boullosa DA, Pires FO. Acute prior heavy strength exercise bouts improve the 20-km cycling time trial performance. J Strength Cond Res. 2014;28(9):25132520. PubMed ID: 24584047 doi:10.1519/JSC.0000000000000442

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Balshaw TG, Fry A, Maden-Wilkinson TM, Kong PW, Folland JP. Reliability of quadriceps surface electromyography measurements is improved by two vs single site recordings. Eur J Appl Physiol. 2017;117(6):10851094. PubMed ID: 28391392 doi:10.1007/s00421-017-3595-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. Spreadsheets for analysis of controlled trials, with adjustments for a subject characteristicSportsci. 2017;21:14. http://sportsci.org/2017/wghxls.htm. Accessed March 29, 2017.

    • Search Google Scholar
    • Export Citation
  • 21.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Mahwah, NJ: Lawrence Erlbaum; 1988.

  • 22.

    Fradkin AJ, Zazryn TR, Smoliga JM. Effects of warming up on physical performance: a systematic review with meta-analysis. J Strength Cond Res. 2010;24(1):140148. PubMed ID: 19996770 doi:10.1519/JSC.0b013e3181c643a0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Patterson SD, Bezodis NE, Glaister M, Pattison JR. The effect of ischemic preconditioning on repeated sprint cycling performance. Med Sci Sports Exerc. 2015;47(8):16521658. PubMed ID: 25412297 doi:10.1249/MSS.0000000000000576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    McIlvenna LC, Muggeridge DJ, Forrest Nee Whyte LJ, et al. Lower limb ischemic preconditioning combined with dietary nitrate supplementation does not influence time-trial performance in well-trained cyclists. J Sci Med Sport. 2019;22(7):852857. PubMed ID: 30745097 doi:10.1016/j.jsams.2019.01.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Paradis-Deschenes P, Joanisse DR, Billaut F. Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Appl Physiol Nutr Metab. 2016;41(9):938944. PubMed ID: 27574913 doi:10.1139/apnm-2015-0561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Paradis-Deschenes P, Joanisse DR, Billaut F. Ischemic preconditioning improves time trial performance at moderate altitude. Med Sci Sports Exerc. 2018;50(3):533541. PubMed ID: 29112625 doi:10.1249/MSS.0000000000001473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kido K, Suga T, Tanaka D, et al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3(5):e12395. doi:10.14814/phy2.12395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gibson N, Mahony B, Tracey C, Fawkner S, Murray A. Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. J Sports Sci. 2015;33(11):11821188. PubMed ID: 25517761 doi:10.1080/02640414.2014.988741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cruz RS, de Aguiar RA, Turnes T, Pereira KL, Caputo F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol. 2015;119(9):961967. doi:10.1152/japplphysiol.00498.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lalonde F, Curnier DY. Can anaerobic performance be improved by remote ischemic preconditioning? J Strength Cond Res. 2015;29(1):8085. PubMed ID: 25068802 doi:10.1519/JSC.0000000000000609

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Paixao RC, da Mota GR, Marocolo M. Acute effect of ischemic preconditioning is detrimental to anaerobic performance in cyclists. Int J Sports Med. 2014;35(11):e5. PubMed ID: 25009965 doi:10.1055/s-0034-1384588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jeukendrup A, Saris WH, Brouns F, Kester AD. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28(2):266270. PubMed ID: 8775164 doi:10.1097/00005768-199602000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Marocolo M, da Mota GR, Pelegrini V, Appell Coriolano HJ. Are the beneficial effects of ischemic preconditioning on performance partly a placebo effect? Int J Sports Med. 2015;36(10):822825. PubMed ID: 26058479 doi:10.1055/s-0035-1549857

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Stuart DS, Lingley MD, Grange RW, Houston ME. Myosin light chain phosphorylation and contractile performance of human skeletal muscle. Can J Physiol Pharmacol. 1988;66(1):4954. PubMed ID: 3370535 doi:10.1139/y88-009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 265 265 54
Full Text Views 20 20 4
PDF Downloads 15 15 5