Effects of High-Intensity Interval Training in Hypoxia on Taekwondo Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To evaluate the effects of a 6-week taekwondo-specific high-intensity interval training (HIIT) in simulated normobaric hypoxia on physical fitness and performance in taekwondoists. Methods: Eighteen male and female black-belt taekwondoists trained twice a week for 6 weeks in normoxia or in hypoxia (FiO2 = 0.143 O2). The HIIT was composed of specific taekwondo movements and simulated fights. Body composition analyses and a frequency speed of kick test during 10 seconds (FSKT10s) and 5 × 10 seconds (FSKTmult), countermovement jump (CMJ) test, Wingate test, and an incremental treadmill test were performed before and after training. Blood lactate concentrations were measured after the FSKTmult and Wingate tests, and a fatigue index during the tests was calculated. Results: A training effect was found for FSKT10s (+35%, P < .001), FSKTmult (+32%, P < .001), and fatigue index (−48%, P = .002). A training effect was found for CMJ height (+5%, P = .003) during the CMJ test. After training, CMJ height increased in hypoxia only (+7%, P = .005). No effect was found for the parameters measured during Wingate test. For the incremental treadmill test, a training effect was found for peak oxygen consumption (P = .002), the latter being 10% lower after than before training in normoxia only (P = .002). Conclusions: In black-belt taekwondoists, hypoxic HIIT twice a week for 6 weeks provides tiny additional gains on key performance parameters compared with normoxic HIIT. Whether the trivial effects reported here might be of physiological relevance to improve performance remains debatable and should be tested individually.

The authors are with the Inst of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium. Chacón Torrealba and Aranda Araya are also with Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.

Deldicque (louise.deldicque@uclouvain.be) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 136 KB)
    • Supplementary Table 2 (PDF 109 KB)
  • 1.

    Bridge CA, Ferreira da Silva Santos J, Chaabene H, Pieter W, Franchini E. Physical and physiological profiles of Taekwondo athletes. Sports Med. 2014;44(6):713733. PubMed ID: 24549477 doi:10.1007/s40279-014-0159-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Monks L, Seo MW, Kim HB, Jung HC, Song JK. High-intensity interval training and athletic performance in Taekwondo athletes. J Sports Med Phys Fitness. 2017;57(10):12521260. PubMed ID: 28085127

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chuang SJ, Sung YC, Chen CY, Liao YH, Chou CC. Can match-mimicking intermittent practice be used as a simulatory training mode of competition using Olympic Time Frame in elite Taekwondo athletes? Front Physiol. 2019;10:244. PubMed ID: 30949063 doi:10.3389/fphys.2019.00244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Matsushigue KA, Hartmann K, Franchini E. Taekwondo: physiological responses and match analysis. J Strength Cond Res. 2009;23(4):11121117. PubMed ID: 19528839 doi:10.1519/JSC.0b013e3181a3c597

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927954. PubMed ID: 23832851 doi:10.1007/s40279-013-0066-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—part II: recommendations for training. Sports Med. 2011;41(9):741756. PubMed ID: 21846163 doi:10.2165/11590560-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Franchini E, Cormack S, Takito MY. Effects of high-intensity interval training on Olympic Combat Sports Athletes’ performance and physiological adaptation: a systematic review. J Strength Cond Res. 2019;33(1):242252. PubMed ID: 30431531 doi:10.1519/JSC.0000000000002957

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1303R1310. PubMed ID: 21451146 doi:10.1152/ajpregu.00538.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Larsen RG, Maynard L, Kent JA. High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans. Acta Physiol. 2014;211(1):147160. doi:10.1111/apha.12275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Puype J, Van Proeyen K, Raymackers JM, Deldicque L, Hespel P. Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Med Sci Sports Exerc. 2013;45(11):21662174. PubMed ID: 23604068 doi:10.1249/MSS.0b013e31829734ae

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497504. PubMed ID: 718832 doi:10.1079/BJN19780152

  • 12.

    Siri WE. The gross composition of the body. Adv Biol Med Phys. 1956;4:239280. PubMed ID: 13354513

  • 13.

    da Silva Santos JF, Franchini E. Is frequency speed of kick test responsive to training? A study with Taekwondo athletes. Sport Sci Health. 2016;12(3):377382. doi:10.1007/s11332-016-0300-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Santos J, Franchini E. Frequency speed of kick test performance comparison between female Taekwondo athletes of different competitive levels. J Strength Cond Res. 2018;32(10):29342938. PubMed ID: 29489711 doi:10.1519/JSC.0000000000002552

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kostikiadis IN, Methenitis S, Tsoukos A, Veligekas P, Terzis G, Bogdanis GC. The effect of short-term sport-specific strength and conditioning training on physical fitness of well-trained mixed martial arts athletes. J Sports Sci Med. 2018;17(3):348358. PubMed ID: 30116107

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rago V, Brito J, Figueiredo P, et al. Countermovement jump analysis using different portable devices: implications for field testing. Sports. 2018;6(3):E91. PubMed ID: 30200384 doi:10.3390/sports6030091

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bar-Or O. The Wingate anaerobic test: an update on methodology, reliability and validity. Sports Med. 1987;4(6):381394. PubMed ID: 3324256 doi:10.2165/00007256-198704060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sant’Ana J, Franchini E, Murias J, Diefenthaeler F. Validity of a Taekwondo specific test to measure VO2peak and the heart rate deflection point. J Strength Cond Res. 2019;33(9):25232529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Sawilowsky SS. New effect size rules of thumb. J Mod Appl Stat Methods. 2009;8(2):597599. doi:10.22237/jmasm/1257035100

  • 20.

    Brocherie F, Girard O, Faiss R, Millet GP. Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med. 2017;47(8):16511660. PubMed ID: 28194720 doi:10.1007/s40279-017-0685-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Montero D, Lundby C. No improved performance with repeated-sprint training in hypoxia versus normoxia: a double-blind and crossover study. Int J Sports Physiol Perform. 2017;12(2):161167. PubMed ID: 27140941 doi:10.1123/ijspp.2015-0691

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Brocherie F, Girard O, Faiss R, Millet GP. High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players. J Strength Cond Res. 2015;29(1):226237. PubMed ID: 24978836 doi:10.1519/JSC.0000000000000590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Goods PS, Dawson B, Landers GJ, Gore CJ, Peeling P. No additional benefit of repeat-sprint training in hypoxia than in normoxia on sea-level repeat-sprint ability. J Sports Sci Med. 2015;14(3):681688. PubMed ID: 26336357

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Brocherie F, Millet GP, Hauser A, et al. “Live high-train low and high” hypoxic training improves team-sport performance. Med Sci Sports Exerc. 2015;47(10):21402149. PubMed ID: 25668402 doi:10.1249/MSS.0000000000000630

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McErlain-Naylor S, King M, Pain MT. Determinants of countermovement jump performance: a kinetic and kinematic analysis. J Sports Sci. 2014;32(19):18051812. PubMed ID: 24875041 doi:10.1080/02640414.2014.924055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hamlin MJ, Marshall HC, Hellemans J, Ainslie PN, Anglem N. Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand J Med Sci Sports. 2010;20(4):651661. PubMed ID: 19793215 doi:10.1111/j.1600-0838.2009.00946.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol. 2001;84(4):283290. PubMed ID: 11374111 doi:10.1007/s004210000363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Woorons X, Millet GP, Mucci P. Physiological adaptations to repeated sprint training in hypoxia induced by voluntary hypoventilation at low lung volume. Eur J Appl Physiol. 2019;119(9):19591970. PubMed ID: 31286240 doi:10.1007/s00421-019-04184-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Chapman RF. The individual response to training and competition at altitude. Br J Sports Med. 2013;47(suppl 1):i40i44. doi:10.1136/bjsports-2013-092837

All Time Past Year Past 30 Days
Abstract Views 327 327 134
Full Text Views 19 19 9
PDF Downloads 17 17 13