Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: High cardiorespiratory capacity is a key determinant of human performance and life expectancy; however, the underlying mechanisms are not fully understood. The objective of this pilot study was to investigate biochemical signatures of endurance-performance athletes using high-resolution nontargeted metabolomics. Methods: Elite long-distance runners with similar training and anthropometrical records were studied. After athletes’ maximal oxygen consumption (V˙O2max) was measured, they were divided into 2 groups: low V˙O2max (<65 mL·kg−1·min−1, n = 7) and high V˙O2max (>75 mL·kg−1·min−1, n = 7). Plasma was collected under basal conditions after 12 hours of fasting and after a maximal exercise test (nonfasted) and analyzed by high-resolution LC–MS. Multivariate and univariate statistics were applied. Results: A total of 167 compounds were putatively identified with an LC–MS-based metabolomics pipeline. Partial least-squares discriminant analysis showed a clear separation between groups. Significant variations in metabolites highlighted group differences in diverse metabolic pathways, including lipids, vitamins, amino acids, purine, histidine, xenobiotics, and others, either under basal condition or after the maximal exercise test. Conclusions: Taken together, the metabolic alterations revealed in the study affect cellular energy use and availability, oxidative stress management, muscle damage, central nervous system signaling metabolites, nutrients, and compound bioavailability, providing new insights into metabolic alterations associated with exercise and cardiorespiratory fitness levels in trained athletes.

Monnerat and Campos de Carvalho are with the Inst of Biophysics Carlos Chagas Filho; Sánchez, Paulucio, Velasque, and Pompeu, the School of Physical Education and Sports; G. Evaristo, J. Evaristo, and Nogueira, LADETEC, Inst of Chemistry; and Nogueira and Domont, Proteomic Unit, Inst of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Santos is with the Brazilian Army Inst of Biology, Rio de Janeiro, Brazil. Serrato is with the Dept of Internal Medicine and Dept of Exercise Physiology, National University of Colombia, Bogotá, Colombia. Lima is with the Military Inst of Engineering (IME), Rio de Janeiro, Brazil. Bishop is with the Inst for Health and Sport, Victoria University, Melbourne, VIC, Australia. Monnerat is also with the National Inst of Cardiology, Rio de Janeiro, RJ, Brazil.

Santos (calebguedes@gmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (PDF 210 KB)
    • Supplementary Figure S2 (PDF 278 KB)
    • Supplementary Material (PDF 84 KB)
    • Supplementary Table S1 (PDF 1 MB)
    • Supplementary Table S2 (PDF 192 KB)
    • Supplementary Table S3 (PDF 99 KB)
    • Supplementary Table S4 (PDF 188 KB)
    • Supplementary Table S5 (PDF 94 KB)
  • 1.

    Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):20242035. PubMed ID: 19454641 doi:10.1001/jama.2009.681

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Scharhag-Rosenberger F, Meyer T, Gassler N, Faude O, Kindermann W. Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J Sci Med Sport. 2010;13(1):7479. PubMed ID: 19230766 doi:10.1016/j.jsams.2008.12.626

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Stelken AM, Younis LT, Jennison SH, et al. Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol. 1996;27(2):345352. PubMed ID: 8557904

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bassett DRJ, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):7084. PubMed ID: 10647532

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Booth FW, Tseng BS, Fluck M, Carson JA. Molecular and cellular adaptation of muscle in response to physical training. Acta Physiol Scand. 1998;162(3):343350. PubMed ID: 9578380 doi:10.1046/j.1365-201X.1998.0326e.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162184. PubMed ID: 23395166 doi:10.1016/j.cmet.2012.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737763. PubMed ID: 17722947

  • 9.

    Valerio DF, Berton R, Conceicao MS, et al. Early metabolic response after resistance exercise with blood flow restriction in well-trained men: a metabolomics approach. Appl Physiol Nutr Metab. 2018;43(3):240246. PubMed ID: 29049889 doi:10.1139/apnm-2017-0471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ekkekakis P, Hall EE, Petruzzello SJ. Practical markers of the transition from aerobic to anaerobic metabolism during exercise: rationale and a case for affect-based exercise prescription. Prev Med (Baltim). 2004;38(2):149159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):743751. PubMed ID: 17849143 doi:10.1007/s00421-007-0552-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ra SG, Maeda S, Higashino R, Imai T, Miyakawa S. Metabolomics of salivary fatigue markers in soccer players after consecutive games. Appl Physiol Nutr Metab. 2014;39(10):11201126. PubMed ID: 24988119 doi:10.1139/apnm-2013-0546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Carneiro G, Radcenco AL, Evaristo J, Monnerat G. Novel strategies for clinical investigation and biomarker discovery: a guide to applied metabolomics. Horm Mol Biol Clin Investig. 2019;38(3):113. doi:10.1515/hmbci-2018-0045

    • Search Google Scholar
    • Export Citation
  • 14.

    Lewis GD, Farrell L, Wood MJ, et al. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;2(33):33ra37. PubMed ID: 20505214 doi:10.1126/scitranslmed.3001006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Xavier R, Sánchez C, Paulucio D, et al. A multidimensional approach to assessing anthropometric and aerobic fitness profiles of elite Brazilian endurance athletes and military personnel. Mil Med. 2019;184(11–12):875881. doi:10.1093/milmed/usz003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757785. PubMed ID: 29617642 doi 10.1016/j.cmet.2018.03.008

  • 17.

    Burke LM, Hawley JA. Swifter, higher, stronger: what’s on the menu? Science. 2018;362(6416):781787. PubMed ID: 30442803 doi:10.1126/science.aau2093

  • 18.

    Harshman SW, Pitsch RL, Smith ZK, et al. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: a pilot investigation. PLoS One. 2018;13(11):e0203133. PubMed ID: 30383773 doi:10.1371/journal.pone.0203133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hittel DS, Hathout Y, Hoffman EP. Proteomics and systems biology in exercise and sport sciences research. Exerc Sport Sci Rev. 2007;35(1):511. PubMed ID: 17211187 doi:10.1097/jes.0b013e31802d744a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Niel R, Ayachi M, Mille-Hamard L, et al. A new model of short acceleration-based training improves exercise performance in old mice. Scand J Med Sci Sports. 2017;27(12):15761587. PubMed ID: 28000342 doi:10.1111/sms.12809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Georgiades E, Klissouras V, Baulch J, Wang G, Pitsiladis Y. Why nature prevails over nurture in the making of the elite athlete. BMC Genomics. 2017;18(suppl 8):835. PubMed ID: 29143595 doi:10.1186/s12864-017-4190-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Overmyer KA, Evans CR, Qi NR, et al. Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation. Cell Metab. 2015;21(3):468478. PubMed ID: 25738461 doi:10.1016/j.cmet.2015.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Monleon D, Garcia-Valles R, Morales JM, et al. Metabolomic analysis of long-term spontaneous exercise in mice suggests increased lipolysis and altered glucose metabolism when animals are at rest. J Appl Physiol. 2014;117(10):11101119. PubMed ID: 25190738 doi:10.1152/japplphysiol.00585.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Falegan OS, Vogel HJ, Hittel DS, et al. High aerobic capacity mitigates changes in the plasma metabolomic profile associated with aging. J Proteome Res. 2017;16(2):798805. PubMed ID: 27936752 doi:10.1021/acs.jproteome.6b00796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Al-Khelaifi F, Diboun I, Donati F, et al. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med Open. 2018;4(1):2. doi:10.1186/s40798-017-0114-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Al-Khelaifi F, Donati F, Botrè F, et al. Metabolic profiling of elite athletes with different cardiovascular demand. Scand J Med Sci Sports. 2019;29(7):933943. doi:10.1111/sms.13425

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Al-Khelaifi F, Diboun I, Donati F, et al. Metabolomics profiling of xenobiotics in elite athletes: relevance to supplement consumption. J Int Soc Sports Nutr. 2018;15(1):48. PubMed ID: 30261929 doi:10.1186/s12970-018-0254-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the Gut-Brain Axis. Nutrients. 2016;8(1):pii: E56. PubMed ID: 26805875 doi:10.3390/nu8010056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Strasser B, Geiger D, Schauer M, Gatterer H, Burtscher M, Fuchs D. Effects of exhaustive aerobic exercise on tryptophan-kynurenine metabolism in trained athletes. PLoS One. 2016;11(4):e0153617. PubMed ID: 27124720 doi:10.1371/journal.pone.0153617

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Agudelo LZ, Femenia T, Orhan F, et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 2014;159(1):3345. PubMed ID: 25259918 doi:10.1016/j.cell.2014.07.051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:147. PubMed ID: 11837891 doi:10.1016/s0074-7696(02)13011-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M. Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci U S A. 2016;113(16):42524259. PubMed ID: 27036001 doi:10.1073/pnas.1603023113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Galdino G, Romero T, da Silva JFP, et al. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats. Anesth Analg. 2014;119(3):702715. PubMed ID: 24977916 doi:10.1213/ANE.0000000000000340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A. Exercise activates the endocannabinoid system. Neuroreport. 2003;14(17):22092211. PubMed ID: 14625449 doi:10.1097/00001756-200312020-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Brellenthin AG, Crombie KM, Hillard CJ, Koltyn KF. Endocannabinoid and mood responses to exercise in adults with varying activity levels. Med Sci Sports Exerc. 2017;49(8):16881696. PubMed ID: 28319590 doi:10.1249/MSS.0000000000001276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Raichlen DA, Foster AD, Seillier A, Giuffrida A, Gerdeman GL. Exercise-induced endocannabinoid signaling is modulated by intensity. Eur J Appl Physiol. 2013;113(4):869875. PubMed ID: 22990628 doi:10.1007/s00421-012-2495-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Elia M, Carter A, Bacon S, Winearls CG, Smith R. Clinical usefulness of urinary 3-methylhistidine excretion in indicating muscle protein breakdown. Br Med J. 1981;282(6261):351354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Aranibar N, Vassallo JD, Rathmacher J, et al. Identification of 1- and 3-methylhistidine as biomarkers of skeletal muscle toxicity by nuclear magnetic resonance-based metabolic profiling. Anal Biochem. 2011;410(1):8491. PubMed ID: 21094120 doi:10.1016/j.ab.2010.11.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Havlikova H, Hill M, Hampl R, Starka L. Sex- and age-related changes in epitestosterone in relation to pregnenolone sulfate and testosterone in normal subjects. J Clin Endocrinol Metab. 2002;87(5):22252231. PubMed ID: 11994368 doi:10.1210/jcem.87.5.8499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wang ST, Chen HW, Sheen LY, Lii CK. Methionine and cysteine affect glutathione level, glutathione-related enzyme activities and the expression of glutathione S-transferase isozymes in rat hepatocytes. J Nutr. 1997;127(11):21352141. PubMed ID: 9372907 doi:10.1093/jn/127.11.2135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Christiansen D. Molecular stressors underlying exercise training-induced improvements in K(+) regulation during exercise and Na(+), K(+) -ATPase adaptation in human skeletal muscle. Acta Physiol. 2019;225(3):e13196. PubMed ID: 30288889 doi:10.1111/apha.13196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Drazic A, Winter J. The physiological role of reversible methionine oxidation. Biochim Biophys Acta. 2014;1844(8):13671382. PubMed ID: 24418392 doi:10.1016/j.bbapap.2014.01.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191200. PubMed ID: 23671428 doi:10.5114/aoms.2013.33181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Pedersen BK. Muscle as a secretory organ. Compr Physiol. 2013;3(3):13371362. PubMed ID: 23897689 doi:10.1002/cphy.c120033

  • 45.

    Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933944. PubMed ID: 18805087 doi:10.1016/j.cell.2008.07.048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Baskin KK, Winders BR, Olson EN. Muscle as a “mediator” of systemic metabolism. Cell Metab. 2015;21(2):237248. PubMed ID: 25651178 doi:10.1016/j.cmet.2014.12.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Kong X, Yao T, Zhou P, et al. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab. 2018;28(4):631643.e3. PubMed ID: 30078553 doi:10.1016/j.cmet.2018.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Rossman MJ, Venturelli M, McDaniel J, Amann M, Richardson RS. Muscle mass and peripheral fatigue: a potential role for afferent feedback? Acta Physiol. 2012;206(4):242250. doi:10.1111/j.1748-1716.2012.02471.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Kim CH, Wheatley CM, Behnia M, Johnson BD. The effect of aging on relationships between lean body mass and VO2 max in rowers. PLoS One. 2016;11(8):e0160275. PubMed ID: 27479009 doi:10.1371/journal.pone.0160275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Fleg JL, Lakatta EG. Role of muscle loss in the age-associated reduction in VO2 max. J Appl Physiol. 1988;65(3):11471151. PubMed ID: 3182484 doi:10.1152/jappl.1988.65.3.1147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Bouchard C. Exercise genomics--a paradigm shift is needed: a commentary. Br J Sports Med. 2015;49(23):14921496. PubMed ID: 26429807 doi:10.1136/bjsports-2015-095294

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 207 207 107
Full Text Views 21 21 8
PDF Downloads 12 12 4