Purpose: To examine the physiological, muscle-damage, endocrine, and immune responses to a modified soccer-simulation protocol to include technical and jumping activities characteristic of match play (the Technical Soccer-Specific Aerobic Field Test; T-SAFT90). Methods: Eighteen university players (age 23 [2] y, stature 175 [5] cm, body mass 74 [11] kg) performed the 90-minute protocol, with acute physiological responses monitored via heart rate, ratings of perceived exertion (6–20 scale), and body mass changes. Creatine kinase, myoglobin, cortisol, and leukocyte subset concentrations were measured at baseline, immediately (0 h), and 24 hours post T-SAFT90. Results: T-SAFT90 incurred an average heart rate equivalent to 87% (5%) of maximum, 16 (2) a.u. ratings of perceived exertion, and a 1.5% (1.0%) body mass deficit. Moderate to large proliferation of leukocyte subsets (P ≤ .01; leukocytes: 6.4-fold; neutrophils: 5.5-fold; lymphocytes: 2.0-fold) and increases in cortisol (2.3-fold) were observed at 0 hours (effect size = 1.13–3.52), each returning to baseline by 24 hours (P > .45; effect size = 0.05–0.50). Myoglobin peaked immediately post T-SAFT90 (4.8-fold), whereas creatine kinase (24 h: 6.0-fold) showed a delayed time course (both P ≤ .001; very large effects; effect size = 2.66 and 3.43, respectively). Conclusions: The magnitude and time course of the physiological, immune, endocrine, and muscle-damage markers observed during and following T-SAFT90 are similar to values reported in match-play literature, demonstrating external validity of the simulation.