Sex-Related Changes in Physical Performance, Well-Being, and Neuromuscular Function of Elite Touch Players During a 4-Day International Tournament

Click name to view affiliation

Nick Dobbin
Search for other papers by Nick Dobbin in
Current site
Google Scholar
PubMed
Close
,
Cari Thorpe
Search for other papers by Cari Thorpe in
Current site
Google Scholar
PubMed
Close
,
Jamie Highton
Search for other papers by Jamie Highton in
Current site
Google Scholar
PubMed
Close
, and
Craig Twist
Search for other papers by Craig Twist in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To examine the within- and between-sexes physical performance, well-being, and neuromuscular function responses across a 4-day international touch rugby (Touch) tournament. Methods: Twenty-one males and 20 females completed measures of well-being (fatigue, soreness, sleep, mood, and stress) and neuromuscular function (countermovement jump height, peak power output, and peak force) during a 4-day tournament with internal, external, and perceptual loads recorded for all matches. Results: Relative and absolute total, low-intensity (females), and high-intensity distance were lower on day 3 (males and females) (effect size [ES] = −0.37 to −0.71) compared with day 1. Mean heart rate was possibly to most likely lower during the tournament (except day 2 males; ES = −0.36 to −0.74), whereas rating of perceived exertion-training load was consistently higher in females (ES = 0.02 to 0.83). The change in mean fatigue, soreness, and overall well-being was unclear to most likely lower (ES = −0.33 to −1.90) across the tournament for both sexes, with greater perceived fatigue and soreness in females on days 3 to 4 (ES = 0.39 to 0.78). Jump height and peak power output were possibly to most likely lower across days 2 to 4 (ES = −0.30 to −0.84), with greater reductions in females (ES = 0.21 to 0.66). Well-being, countermovement jump height, and peak force were associated with changes in external, internal, and perceptual measures of load across the tournament (η2 = −.37 to .39). Conclusions: Elite Touch players experience reductions in well-being, neuromuscular function, and running performance across a 4-day tournament, with notable differences in fatigue and running between males and females, suggesting that sex-specific monitoring and intervention strategies are necessary.

Dobbin and Thorpe are with the Dept of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom, and the England Touch Association, Manchester, United Kingdom. Highton and Twist are with the Dept of Sport and Exercise Science, University of Chester, Chester, United Kingdom.

Dobbin (N.Dobbin@mmu.ac.uk) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 136 KB)
  • Collapse
  • Expand
  • 1.

    Beaven RP, Highton JM, Thorpe MC, Knott EV, Twist C. Movement and physiological demands of international and regional men’s touch rugby matches. J Strength Cond Res. 2014;28(11):32743279. doi:10.1519/JSC.0000000000000535

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Marsh N, Dobbin N, Twist C, Curtis C. Estimates of energy intake and expenditure in elite female touch players during an international tournament. Int J Sport Nutr Exerc Metab. 2017;27(6):499506. doi:10.1123/ijsnem.2017-0082

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vickery W, Harkness A. Physical, physiological and perceptual match demands of amateur mixed gender touch players. J Sports Sci Med. 2017;16(4):589594. PubMed ID: 29238261

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Oxendale CL, Highton J, Twist C. Energy expenditure, metabolic power and high speed activity during linear and multi-directional running. J Sci Med Sport. 2017;20(10):957961. doi:10.1016/j.jsams.2017.03.013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Twist C, Highton J, Daniels M, Mill N, Close G. Player responses to match and training demands during an intensified fixture schedule in professional rugby league: a case study. Int J Sports Physiol Perform. 2017;12(8):10931099. doi:10.1123/ijspp.2016-0390

    • Search Google Scholar
    • Export Citation
  • 6.

    Clarke AC, Anson JM, Pyne DB. Neuromuscular fatigue and muscle damage after a women’s rugby sevens tournament. Int J Sports Physiol Perform. 2015;10(6):808814. doi:10.1123/ijspp.2014-0590

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hogarth LW, Burkett BJ, McKean MR. Neuromuscular and perceptual fatigue responses to consecutive tag football matches. Int J Sports Physiol Perform. 2015;10(5):559565. doi:10.1123/ijspp.2014-0355

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Johnston RD, Gabbett TJ, Jenkins D. Influence of an intensified competition on fatigue and match performance in junior rugby league players. J Sci Med Sport. 2013;16:460465. doi:10.1016/j.jsams.2012.10.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hunter SK. The relevance of sex differences in performance fatigability. Med Sci Sports Exerc. 2016;48(11):22472256. doi:10.1249/MSS.0000000000000928

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hunter SK. Sex differences in human fatigability: mechanism and insight to physiological responses. Acta Physiol. 2014;210(4):768789. doi:10.1111/apha.12234

    • Search Google Scholar
    • Export Citation
  • 11.

    Rinard J, Clarkson PM, Smith LL, Grossman M. Responses of male and females to high-force eccentric exercise. J Sports Sci. 2000;18(4):229236. doi:10.1080/026404100364965

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sayers SP, Clarkson PM. Force recovery after eccentric exercise in males and females. Eur J Appl Physiol. 2001;84:122126. doi:10.1007/s004210000346

  • 13.

    Lee A, Baxter J, Eischer C, Gage M, Hunter S, Yoon T. Sex differences in neuromuscular function after repeated eccentric contractions of the knee extensor muscle. Eur J Appl Physiol. 2017;117(6):11191130. doi:10.1007/s00421-017-3599-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hubal M, Rubinstein SR, Clarkson PM. Muscle function in men and women during maximal eccentric exercise. J Strength Cond Res. 2008;22(4):13321338. doi:10.1519/JSC.0b013e31817392ec

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hicks KM, Onambele GL, Winwood K, Morse CI. Muscle damage following maximal eccentric knee extensions in males and females. PLoS One. 2016;11(3):e0150848. doi:10.1371/journal.pone.0150848

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Power GA, Dalton BH, Rice CL, Vandervoort AA. Peak power is reduced following lengthening contractions despite a maintenance of shortening velocity. Appl Physiol Nutr Metab. 2013;38(12):11961205. PubMed ID: 24195619 doi:10.1139/apnm-2013-0092

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Billaut F, Smith K. Sex alters impact of repeated bouts of sprint exercise on neuromuscular activity in training athletes. Appl Physiol Nutr Metab. 2009;34(4):689699. PubMed ID: 19767805 doi:10.1139/H09-058

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG. Spreadsheets for analysis of controlled trials, crossovers and time series (post-only crossover). Sportscience. 2017;21:14. www.sportsci.org/2017/wghxls.htm. Accessed October 16, 2019.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. Spreadsheets for analysis of controlled trials, crossovers and time series (pre-post parallel-groups). Sportscience. 2017;21:14. www.sportsci.org/2017/wghxls.htm. Accessed October 16, 2019.

    • Search Google Scholar
    • Export Citation
  • 21.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rosnow RL, Rosenthal R, Rubin DB. Contrasts and correlations in effect-size estimation. Psychol Sci. 2000;11(6):446453. doi:10.1111/1467-9280.00287

  • 23.

    Kellmann M, Altenburg D, Lormes W, Steinacker JM. Assessing stress and recovery during preparation of the world championships in rowing. Sport Psychol. 2001;15:151167. doi:10.1123/tsp.15.2.151

    • Search Google Scholar
    • Export Citation
  • 24.

    Hogarth LW, Burkett BJ, McKean MR. Influence of Yo-Yo IR2 scores on internal and external workloads and fatigue responses of tag football players during tournament competition. PLoS One. 2015;10(10):e0140547. PubMed ID: 26465599 doi:10.1371/journal.pone.0140547

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Waldron M, Highton J. Fatigue and pacing in high-intensity intermittent team sports. Sports Med. 2014;44(12):16451658. PubMed ID: 25047854 doi:10.1007/s40279-014-0230-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Le Meur Y, Hausswirth C, Natta F, Couturier A, Bignet F, Vidal PP. A multidisciplinary approach to overreaching detection in endurance athlete. J Appl Physiol. 2013;114(3):411420. PubMed ID: 23195630 doi:10.1152/japplphysiol.01254.2012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Oxendale C, Twist C, Daniels M, Highton J. The relationship between match-play characteristics of elite rugby league and indirect markers of muscle damage. Int J Sports Physiol Perform. 2016;11(4):515521. PubMed ID: 26355239 doi:10.1123/ijspp.2015-0406

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Di Fronso S, Nakamura FY, Bortoli L, Robazza C, Bertollo M. Stress and recovery balance in amateur basketball players: differences by gender and preparation phase. Int J Sports Physiol Perform. 2013;8(6):618622. doi:10.1123/ijspp.8.6.618

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Johnston RD, Gibson NV, Twist C, Gabbett TJ, MacNay SA, MacFarlane NG. Physiological responses to an intensified period of rugby league competition. J Strength Cond Res. 2013;27:643654. PubMed ID: 22592168 doi:10.1519/JSC.0b013e31825bb469

    • Search Google Scholar
    • Export Citation
  • 30.

    Twist C, Eston R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Apply Physiol. 2005;94;652658. doi:10.1007/s00421-005-1357-9

    • Search Google Scholar
    • Export Citation
  • 31.

    Kendall B, Eston R. Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med. 2002;32(2):103123. PubMed ID: 11817996 doi:10.2165/00007256-200232020-00003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jacobs I, Kaiser T, Tesch P. Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibres. Eur J Appl Physiol Occup Physiol. 1981;46(1):4753. PubMed ID: 7194784 doi:10.1007/BF00422176

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 566 501 150
Full Text Views 39 24 0
PDF Downloads 31 17 0