Differences in Lower Limb Strength and Structure After 12 Weeks of Resistance, Endurance, and Concurrent Training

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To investigate strength and structural adaptations after 12 weeks of resistance, endurance cycling, and concurrent training. Methods: Thirty-two healthy males undertook 12 weeks of resistance-only (RT; n = 10), endurance-only (END; n = 10), or concurrent resistance and endurance training (CONC; n = 12). Biceps femoris long head (BFlh) architecture, strength (3-lift 1-repetition maximum), and body composition were assessed. Results: Fascicle length of the BFlh reduced 15% (6%) (P < .001) and 9% (6%) (P < .001) in the END and CONC groups postintervention, with no change in the RT group (−4% [11%], P = .476). All groups increased BFlh pennation angle (CONC: 18% [9%], RT: 14% [8%], and END: 18% [10%]). Thickness of the BFlh increased postintervention by 7% (6%) (P = .002) and 7% (7%) (P = .003) in the CONC and RT groups, respectively, but not in the END group (0% [3%], P = .994). Both the CONC and RT groups significantly increased by 27% (11%) (P < .001) and 33% (12%) (P < .001) in 3-lift totals following the intervention, with no changes in the END cohort (6% [6%], P = .166). No significant differences were found for total body (CONC: 4% [2%], RT: 4% [2%], and END: 3% [2%]) and leg (CONC: 5% [3%], RT: 6% [3%], and END: 5% [3%]) fat-free mass. Conclusions: Twelve weeks of RT, END, or CONC significantly modified BFlh architecture. This study suggests that conventional resistance training may dampen BFlh fascicle shortening from cycling training while increasing strength simultaneously in concurrent training. Furthermore, the inclusion of a cycle endurance training stimulus may result in alterations to hamstring architecture that increase the risk of future injury. Therefore, the incorporation of endurance cycling training within concurrent training paradigms should be reevaluated when trying to modulate injury risk.

Timmins, Tofari, and Hickey are with the School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia. Shamim and Camera are with the Exercise and Nutrition Research Program, Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Camera is also with the Dept of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia.

Timmins (Ryan.Timmins@acu.edu.au) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 409 KB)
    • Supplementary Material 2 (PDF 360 KB)
  • 1.

    Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553558. PubMed ID: 19553225 doi:10.1136/bjsm.2009.060582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hickey J, Shield AJ, Williams MD, Opar DA. The financial cost of hamstring strain injuries in the Australian Football League. Br J Sports Med. 2014;48(8):729730. PubMed ID: 24124035 doi:10.1136/bjsports-2013-092884

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ekstrand J, Walden M, Hagglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731737. PubMed ID: 26746908 doi:10.1136/bjsports-2015-095359

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):15241535. PubMed ID: 26675089 doi:10.1136/bjsports-2015-095362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med. 2016;50(23):14671472. PubMed ID: 26817705 doi:10.1136/bjsports-2015-094881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):17751783. PubMed ID: 29572976 doi:10.1111/sms.13085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469477. PubMed ID: 27660368 doi:10.1136/bjsports-2016-096130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Timmins RG, Ruddy JD, Presland J, et al. Architectural changes of the biceps femoris long head after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499508. PubMed ID: 26460634 doi:10.1249/MSS.0000000000000795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Baker D. The effects of an in-season of concurrent training on the maintenance of maximal strength and power in professional and college-aged rugby league football players. J Strength Cond Res. 2001;15(2):172177. PubMed ID: 11710401

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Argus CK, Gill N, Keogh J, Hopkins WG, Beaven CM. Effects of a short-term pre-season training programme on the body composition and anaerobic performance of professional rugby union players. J Sports Sci. 2010;28(6):679686. PubMed ID: 20397095 doi:10.1080/02640411003645695

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs short muscle length eccentric training. Front Physiol. 2016;7:340. doi:10.3389/fphys.2016.00340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    da Silva JC, Tarassova O, Ekblom MM, Andersson E, Rönquist G, Arndt A. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. Eur J Appl Physiol. 2016;116(9):18071817. PubMed ID: 27448605 doi:10.1007/s00421-016-3428-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Lynn R, Talbot JA, Morgan DL. Differences in rat skeletal muscles after incline and decline running. J Appl Physiol. 1998;85(1):98104. doi:10.1152/jappl.1998.85.1.98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Shamim B, Devlin BL, Timmins RG, et al. Adaptations to concurrent training in combination with high protein availability: a comparative trial in healthy, recreationally active men. Sports Med. 2018;48(12):28692883. PubMed ID: 30341593 doi:10.1007/s40279-018-0999-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905913. PubMed ID: 25207929 doi:10.1249/MSS.0000000000000507

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. 2006;209(3):289310. PubMed ID: 16928199 doi:10.1111/j.1469-7580.2006.00619.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kellis E, Galanis N, Natsis K, Kapetanos G. Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech. 2009;42(15):25492554. PubMed ID: 19646698 doi:10.1016/j.jbiomech.2009.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tosovic D, Muirhead JC, Brown JM, Woodley SJ. Anatomy of the long head of biceps femoris: an ultrasound study. Clin Anat. 2016;29(6):738745. PubMed ID: 27012306 doi:10.1002/ca.22718

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Camera DM, West DW, Phillips SM, et al. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise. Med Sci Sports Exerc. 2015;47(1):8291. PubMed ID: 24870574 doi:10.1249/MSS.0000000000000390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hawley JA, Noakes TD. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol. 1992;65(1):7983. PubMed ID: 1505544 doi:10.1007/BF01466278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Nana A, Slater GJ, Stewart AD, Burke LM. Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int J Sport Nutr Exerc Metab. 2015;25(2):198215. PubMed ID: 25029265 doi:10.1123/ijsnem.2013-0228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Eddens L, van Someren K, Howatson G. The role of intra-session exercise sequence in the interference effect: a systematic review with meta-analysis. Sports Med. 2018;48(1):177188. PubMed ID: 28917030 doi:10.1007/s40279-017-0784-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Murach KA, Bagley JR. Skeletal muscle hypertrophy with concurrent exercise training: contrary evidence for an interference effect. Sports Med. 2016;46(8):10291039. PubMed ID: 26932769 doi:10.1007/s40279-016-0496-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cohen D. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Erlbaum; 1988.

  • 25.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bourne MN, Timmins RG, Opar DA, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251267. PubMed ID: 29116573 doi:10.1007/s40279-017-0796-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pollard CW, Opar DA, Williams MD, Bourne MN, Timmins RG. Razor hamstring curl and Nordic hamstring exercise architectural adaptations: impact of exercise selection and intensity. Scand J Med Sci Sports. 2019;29(5):706715. PubMed ID: 30629773 doi:10.1111/sms.13381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Duhig SJ, Bourne MN, Buhmann RL, et al. Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes. J Sci Med Sport. 2019;22(7):769774. PubMed ID: 30772189 doi:10.1016/j.jsams.2019.01.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Eisner WD, Bode SD, Nyland J, Caborn DN. Electromyographic timing analysis of forward and backward cycling. Med Sci Sports Exerc. 1999;31(3):449455. PubMed ID: 10188751 doi:10.1097/00005768-199903000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32(6):11251129. PubMed ID: 10862540 doi:10.1097/00005768-200006000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lieber RL. Skeletal muscle architecture: implications for muscle function and surgical tendon transfer. J Hand Ther. 1993;6(2):105113. PubMed ID: 8343877 doi:10.1016/S0894-1130(12)80291-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Aagaard P, Andersen JL, Dyhre-Poulsen P, et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol. 2001;534(Pt. 2):613623. PubMed ID: 11454977 doi:10.1111/j.1469-7793.2001.t01-1-00613.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 431 431 172
Full Text Views 52 52 21
PDF Downloads 30 30 15