Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To verify the effects of using different grip widths in bench press performance in Paralympic powerlifting athletes. Methods: Twelve experienced Paralympic powerlifting male athletes (25.40 [3.30] y, 70.30 [12.15] kg) participated in the study. Maximal dynamic strength and maximal isometric strength (MIS) were determined. Then, mean propulsive velocity (MPV) using 25%, 50%, and 100% of maximal dynamic strength load and time to achieve 30%, 50%, and 100% of MIS were assessed with 4 different grip widths, specifically the biacromial distance (BAD: 42.83 [12.84] cm), 1.3 BAD (55.68 [16.70] cm), 1.5 BAD (63.20 [18.96] cm), and 81 cm. Electromyographic analysis was performed during MIS assessment in the pectoralis major sternal portion, anterior deltoid, triceps brachii long head, and pectoralis major clavicular portion. Results: Large differences were found between MPV performed with different grip widths using 25% of maximal dynamic strength load (P = .02, ηp2=.26). The 1.5 BAD grip tended to show greater force generation and MPV. Moreover, the time needed to achieve 30%, 50%, and 100% of MIS differed between grip widths (P = .03, ηp2=.24), with the lowest values obtained in the 1.5 BAD. Despite the nonstatistical differences that were found, grip widths caused moderate effects on muscle myoelectric activation, showing greater values for pectoralis major clavicular portion and pectoralis major sternal portion, for the 1.3 BAD and 1.5 BAD, respectively. The 1.5 BAD the grip width tended to show greater MPV values and faster contractile responses. Conclusions: These results highlighted the importance of choosing the specific grip width for improvement of performance in Paralympic powerlifting athletes, by increasing velocity of movement and force production in a shorter time, with greater activation of primary muscles.

M.D.M. dos Santos, Aidar, and de Souza are with the Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS); Aidar and de Souza with the Dept of Physical Education; and J.L. dos Santos, the Postgraduate Program in Biotechnology, Northeast Network in Biotechnology (RENORBIO), Federal University of Sergipe, São Cristóvão, Brazil. da Silva de Mello is with the Sports Dept, Federal University of Minas Gerais—UFMG, Belo Horizonte, Brazil. Neiva, Marinho, and Marques are with the Dept of Sport Sciences, University of Beira Interior, Covilhã, Portugal, and the Research Center in Sport Sciences, Health Sciences and Human Development, CIDESD, Covilhã, Portugal.

Neiva (henriquepn@gmail.com) is corresponding author.
  • 1.

    Willick SE, Cushman DM, Blauwet CA, et al. The epidemiology of injuries in powerlifting at the London 2012 Paralympic Games: an analysis of 1411 athlete-days. Scand J Med Sci Sports. 2016;26(10):12331238. PubMed ID: 26453890 doi:10.1111/sms.12554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    International Paralympic Committee. World Para Powerlifting Technical Rules and Regulations. Bonn, Germany: International Paralympic Comitee; 2018.

    • Search Google Scholar
    • Export Citation
  • 3.

    Loturco I, Pereira LA, Winckler C, et al. Load-velocity relationship in national Paralympic powerlifters: a case study. Int J Sports Physiol Perform. 2019;14(4):531535. PubMed ID: 30204509 doi:10.1123/ijspp.2018-0452

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cummings B, Finn KJ. Estimation of a one repetition maximum bench press for untrained women. J Strength Cond Res. 1998;12(4):262265.

  • 5.

    Hunter GR. Changes in body composition, body build and performance associated with different weight training frequencies in males and females. Strength Cond J. 1985;7(1):2628. doi:10.1519/0744-0049(1985)007%3C0026:CIBCBB%3E2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Madsen N, McLaughlin T. Kinematic factors influencing performance and injury risk in the bench press exercise. Med Sci Sports Exerc. 1984;16(4):376381. PubMed ID: 6493018 doi:10.1249/00005768-198408000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wagner LL, Evans SA, Weir JP, Housh TJ, Johnson GO. The effect of grip width on bench press performance. Int J Sport Biomech. 1992;8(1):110. doi:10.1123/ijsb.8.1.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Loturco I, Kobal R, Moraes JE, et al. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res. 2017;31(4):11271131. PubMed ID: 28328719 doi:10.1519/JSC.0000000000001670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Clemons JM, Aaron C. Effect of grip width on the myoelectric activity of the prime movers in the bench press. J Strength Cond Res. 1997;11(2):8287.

    • Search Google Scholar
    • Export Citation
  • 10.

    Lehman GJ. The influence of grip width and forearm pronation/supination on upper-body myoelectric activity during the flat bench press. J Strength Cond Res. 2005;19(3):587591. PubMed ID: 16095407

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Barnett C, Kippers V, Turner P. Effects of variations of the bench press exercise on the EMG activity of five shoulder muscles. J Strength Cond Res. 1995;9(4):222227.

    • Search Google Scholar
    • Export Citation
  • 12.

    Haupt HA. Upper extremity injuries associated with strength training. Clin Sports Med. 2001;20(3):481490. doi:10.1016/S0278-5919(05)70264-7

  • 13.

    Green CM, Comfort P. The affect of grip width on bench press performance and risk of injury. Strength Cond J. 2007;29(5):1014. doi:10.1519/00126548-200710000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Maszczyk A, Gołaś A, Czuba A, et al. EMG analysis and modelling of flat bench press using artificial neural networks. S Afr J Res Sport Phys Edu Rec. 2016;38(1):91103.

    • Search Google Scholar
    • Export Citation
  • 15.

    Gomo O, Van Den Tillaar R. The effects of grip width on sticking region in bench press. J Sports Sci. 2016;34(3):232238. PubMed ID: 26055260 doi:10.1080/02640414.2015.1046395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lockie RG, Callaghan SJ, Moreno MR, et al. An investigation of the mechanics and sticking region of a one-repetition maximum close-grip bench press versus the traditional bench press. Sports. 2017;5:46. doi:10.3390/sports5030046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    González-Badillo J, Marques M, Sánchez-Medina L. The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet. 2011;29A:1519. doi:10.2478/v10078-011-0053-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ball R, Weidman D. Analysis of USA Powerlifting Federation data from January 1, 2012-June 11, 2016. J Strength Cond Res. 2018;32(7):18431851. PubMed ID: 28682930 doi:10.1519/JSC.0000000000002103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Guidetti L, Emerenziani GP, Gallotta MC, Baldari C. Effect of warm up on energy cost and energy sources of a ballet dance exercise. Eur J Appl Physiol. 2007;99(3):275281. PubMed ID: 17165061 doi:10.1007/s00421-006-0348-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Silva LM, Neiva HP, Marques MC, Izquierdo M, Marinho DA. Effects of warm-up, post-warm-up, and re-warm-up strategies on explosive efforts in team sports: a systematic review. Sports Med. 2018;48(10):22852299. PubMed ID: 29968230 doi:10.1007/s40279-018-0958-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Austin D, Mann B. Powerlifting: The Complete Guide to Technique, Training, and Competition. Champaign, IL: Human Kinetics; 2012.

  • 22.

    Brown LE, Weir JP. ASEP procedures recommendations I: accurate assessment of muscular strength and power. J Exerc Physiol Online. 2001;4(3):121.

    • Search Google Scholar
    • Export Citation
  • 23.

    Gonzalo-Skok O, Tous-Fajardo J, Arjol-Serrano JL, Mendez-Villanueva A. Determinants, reliability, and usefulness of a bench press repeated power ability test in young basketball players. J Strength Cond Res. 2014;28(1):126133. PubMed ID: 23669817 doi:10.1519/JSC.0b013e3182986c1f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Milner-Brown HS, Mellenthin M, Miller RG. Quantifying human muscle strength, endurance and fatigue. Arch Phys Med Rehabil. 1986;67(8):530535. PubMed ID: 3741078

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Merletti R. Standards for reporting EMG data. J Electromyogr Kinesiol. 1999;9(1):34.

  • 26.

    Hermens HJ, Freriks B, Merletti R, et al. European Recommendations for Surface Eletromyography: Results of the SENIAM Project. Enschede, the Netherlands: Roessingh Research and Development; 1999.

    • Search Google Scholar
    • Export Citation
  • 27.

    Burden A, Bartlett R. Normalisation of EMG amplitude: an evaluation and comparison of old and new methods. Med Eng Phys. 1999;21(4):247257. PubMed ID: 10514043 doi:10.1016/S1350-4533(99)00054-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cohen J. Statistics a power primer. Psychol Bull. 1992;112:155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 29.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lockie RG, Moreno MR. The close-grip bench press. Strength Cond J. 2017;39(4):3035. doi:10.1519/SSC.0000000000000307

  • 31.

    Saeterbakken AH, Mo DA, Scott S, Andersen V. The effects of bench press variations in competitive athletes on muscle activity and performance. J Hum Kinet. 2017;57(1):6171. doi:10.1515/hukin-2017-0047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lockie RG, Callaghan SJ, Orjalo AJ, Moreno MR. Loading range for the development of peak power in the close-grip bench press versus the traditional bench press. Sports. 2018;6:97. doi:10.3390/sports6030097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35(3):213234. PubMed ID: 15730337 doi:10.2165/00007256-200535030-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sánchez-Medina L, Gonzalez-Badillo JJ, Perez CE, Pallarés JG. Velocity-and power-load relationships of the bench pull vs bench press exercises. Int J Sports Med. 2014;35(3):209216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Van Den Tillaar R, Ettema G. The “sticking period” in a maximum bench press. J Sports Sci. 2010;28(5):529535. PubMed ID: 20373201 doi:10.1080/02640411003628022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Calatayud J, Vinstrup J, Jakobsen MD, et al. Attentional focus and grip width influences on bench press resistance training. Percept Mot Skills. 2018;125(2):265277. PubMed ID: 29231125 doi:10.1177/0031512517747773

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 365 365 136
Full Text Views 30 30 4
PDF Downloads 17 17 1