Concurrent Heat and Intermittent Hypoxic Training: No Additional Performance Benefit Over Temperate Training

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Erin L. McCleave
Search for other papers by Erin L. McCleave in
Current site
Google Scholar
PubMed
Close
,
Katie M. Slattery
Search for other papers by Katie M. Slattery in
Current site
Google Scholar
PubMed
Close
,
Rob Duffield
Search for other papers by Rob Duffield in
Current site
Google Scholar
PubMed
Close
,
Stephen Crowcroft
Search for other papers by Stephen Crowcroft in
Current site
Google Scholar
PubMed
Close
,
Chris R. Abbiss
Search for other papers by Chris R. Abbiss in
Current site
Google Scholar
PubMed
Close
,
Lee K. Wallace
Search for other papers by Lee K. Wallace in
Current site
Google Scholar
PubMed
Close
, and
Aaron J. Coutts
Search for other papers by Aaron J. Coutts in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To examine whether concurrent heat and intermittent hypoxic training can improve endurance performance and physiological responses relative to independent heat or temperate interval training. Methods: Well-trained male cyclists (N = 29) completed 3 weeks of moderate- to high-intensity interval training (4 × 60 min·wk−1) in 1 of 3 conditions: (1) heat (HOT: 32°C, 50% relative humidity, 20.8% fraction of inspired oxygen, (2) heat + hypoxia (H+H: 32°C, 50% relative humidity, 16.2% fraction of inspired oxygen), or (3) temperate environment (CONT: 22°C, 50% relative humidity, 20.8% fraction of inspired oxygen). Performance 20-km time trials (TTs) were conducted in both temperate (TTtemperate) and assigned condition (TTenvironment) before (base), immediately after (mid), and after a 3-week taper (end). Measures of hemoglobin mass, plasma volume, and blood volume were also assessed. Results: There was improved 20-km TT performance to a similar extent across all groups in both TTtemperate (mean ±90% confidence interval HOT, −2.8% ±1.8%; H+H, −2.0% ±1.5%; CONT, −2.0% ±1.8%) and TTenvironment (HOT, −3.3% ±1.7%; H+H, −3.1% ±1.6%; CONT, −3.2% ±1.1%). Plasma volume (HOT, 3.8% ±4.7%; H+H, 3.3% ±4.7%) and blood volume (HOT, 3.0% ±4.1%; H+H, 4.6% ±3.9%) were both increased at mid in HOT and H+H over CONT. Increased hemoglobin mass was observed in H+H only (3.0% ±1.8%). Conclusion: Three weeks of interval training in heat, concurrent heat and hypoxia, or temperate environments improve 20-km TT performance to the same extent. Despite indications of physiological adaptations, the addition of independent heat or concurrent heat and hypoxia provided no greater performance benefits in a temperate environment than temperate training alone.

McCleave, Slattery, Duffield, Crowcroft, Wallace, and Coutts are with the Sport and Exercise Science Discipline Group, Faculty of Health, University of Technology Sydney, Moore Park, NSW, Australia. Slattery and Crowcroft are with the New South Wales Inst of Sport, Sydney Olympic Park, Sydney, NSW, Australia. Abbiss is with the School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia. McCleave is with Rowing Australia, Yarralumla, ACT, Australia.

McCleave (emccleave@rowingaustralia.com.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Nybo L, Rasmussen P, Sawka MN. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol. 2014;4(2):657689. PubMed ID: 24715563 doi:10.1002/cphy.c130012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Wehrlin JP, Hallén J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96(4):404412. PubMed ID: 16311764 doi:10.1007/s00421-005-0081-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Czuba M, Waskiewicz Z, Zajac A, Poprzecki S, Cholewa J, Roczniok R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J Sports Sci Med. 2011;10(1):175183. PubMed ID: 24149312

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):11401147. PubMed ID: 20724560 doi:10.1152/japplphysiol.00495.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Racinais S, Periard JD, Karlsen A, Nybo L. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med Sci Sports Exerc. 2015;47(3):601606. PubMed ID: 24977692 doi:10.1249/MSS.0000000000000428

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Karlsen A, Racinais S, Jensen MV, Nørgaard SJ, Bonne T, Nybo L. Heat acclimatization does not improve VO2max or cycling performance in a cool climate in trained cyclists. Scand J Med Sci Sports. 2015;25:269276. PubMed ID: 25943678 doi:10.1111/sms.2015.25.issue-s1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107127. PubMed ID: 19203133 doi:10.2165/00007256-200939020-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1:18831928. PubMed ID: 23733692 doi:10.1002/cphy.c100082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol. 2001;84(4):283290. PubMed ID: 11374111 doi:10.1007/s004210000363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Faiss R, Leger B, Vesin JM, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One. 2013;8(2):e56522. PubMed ID: 23437154 doi:10.1371/journal.pone.0056522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Roels B, Millet GP, Marcoux CJ, Coste O, Bentley DJ, Candau RB. Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc. 2005;37(1):138146. PubMed ID: 15632680 doi:10.1249/01.MSS.0000150077.30672.88

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Girard O, Racinais S. Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol. 2014;114(7):15211532. PubMed ID: 24748530 doi:10.1007/s00421-014-2883-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Van Cutsem J, Pattyn N, Vissenaeken D, et al. The influence of a mild thermal challenge and severe hypoxia on exercise performance and serum BDNF. Eur J Appl Physiol. 2015;115(10):21352148. PubMed ID: 26026261 doi:10.1007/s00421-015-3193-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Takeno Y, Kamijo YI, Nose H. Thermoregulatory and aerobic changes after endurance training in a hypobaric hypoxic and warm environment. J Appl Physiol. 2001;91(4):15201528. PubMed ID: 11568132 doi:10.1152/jappl.2001.91.4.1520

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Buchheit M, Racinais S, Bilsborough J, et al. Adding heat to the live-high train-low altitude model: a practical insight from professional football. Br J Sports Med. 2013;47(suppl 1):i59i69. doi:10.1136/bjsports-2013-092559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    McCleave EL, Slattery KM, Duffield R, et al. Temperate performance benefits after heat, but not combined heat and hypoxic training. Med Sci Sports Exerc. 2017;49(3):509517. PubMed ID: 27787334 doi:10.1249/MSS.0000000000001138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rendell RA, Prout J, Costello JT, et al. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. Am J Physiol Regul Integr Comp Physiol. 2017;313(3):R191R201. PubMed ID: 28592459 doi:10.1152/ajpregu.00103.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mujika I, Padilla S. Scientific bases for precompetition tapering strategies. Med Sci Sports Exerc. 2003;35(7):11821187. PubMed ID: 12840640 doi:10.1249/01.MSS.0000074448.73931.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Quod MJ, Martin DT, Martin JC, Laursen PB. The power profile predicts road cycling MMP. Int J Sports Med. 2010;31(6):397401. PubMed ID: 20301046 doi:10.1055/s-0030-1247528

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Borg G, Hassmen P, Lagerstrom M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987;56(6):679685. PubMed ID: 3678222 doi:10.1007/BF00424810

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gagge AP, Stolwijk JA, Saltin B. Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environ Res. 1969;2(3):209229. PubMed ID: 5788908 doi:10.1016/0013-9351(69)90037-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Schmidt W, Prommer N. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol. 2005;95(5-6):486495. PubMed ID: 16222540 doi:10.1007/s00421-005-0050-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gore CJ, Bourdon PC, Woolford SM, Ostler LM, Eastwood A, Scroop GC. Time and sample site dependency of the optimized co-rebreathing method. Med Sci Sports Exerc. 2006;38(6):11871193. PubMed ID: 16775562 doi:10.1249/01.mss.0000222848.35004.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc. 2002;34(11):18011807. PubMed ID: 12439086 doi:10.1097/00005768-200211000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Paton CD, Hopkins WG. Variation in performance of elite cyclists from race to race. Eur J Sport Sci. 2006;6(1):2531. doi:10.1080/17461390500422796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 28.

    Aubry A, Hausswirth C, Julien L, Coutts AJ, Le Meur Y. Functional overreaching : the key to peak performance during the taper? Med Sci Sports Exerc. 2014;46(9):17691777. PubMed ID: 25134000 doi:10.1249/MSS.0000000000000301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Daanen HAM, Racinais S, Périard JD. Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 2018;48(2):409430. PubMed ID: 29129022 doi:10.1007/s40279-017-0808-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25:2038. doi:10.1111/sms.2015.25.issue-s1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sawka MN, Concertino VA, Eichner ER, Schnieder SM, Young AJ. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc. 2000;32(2):332. PubMed ID: 10694114 doi:10.1097/00005768-200002000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Warburton DE, Gledhill N, Quinney HA. Blood volume, aerobic power, and endurance performance: potential ergogenic effect of volume loading. Clin J Sport Med. 2000;10(1):5966. PubMed ID: 10695852 doi:10.1097/00042752-200001000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Chapman RF. The individual response to training and competition at altitude. Br J Sports Med. 2013;47(suppl 1):i40i44. doi:10.1136/bjsports-2013-092837

  • 34.

    Racinais S, Mohr M, Buchheit M, et al. Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment. Br J Sports Med. 2012;46(11):810815. PubMed ID: 22797527 doi:10.1136/bjsports-2012-091227

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Gore CJ, Sharpe K, Garvican-Lewis LA, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(suppl 1):131139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Gill N, Sleivert G. Effect of daily versus intermittent exposure on heat acclimation. Aviat Space Environ Med. 2001;72(4):385390. PubMed ID: 11318020

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3463 827 21
Full Text Views 83 20 0
PDF Downloads 88 28 0