Effects of Active and Passive Recovery on Muscle Oxygenation and Swimming Performance

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To compare the effectiveness of 3 recovery protocols on muscle oxygenation, blood lactate, and subsequent performance during a 200-m repeated swim session. Methods: Twelve collegte swimmers completed 3 sessions of 2 consecutive 200-m front-crawl trials separated by 1 of 3 recovery protocols: a 15-minute active recovery (AR), a 15-minute passive recovery (PR), and a combination of 5-minute AR and 10-minute PR (CR) in a counterbalanced design. Tissue saturation index at biceps femoris, blood lactate concentration, arterial oxygen saturation, and heart rate were measured at rest, immediately after the trial, and at 5, 10, and 15 minutes of recovery. Two-way analysis of variance (recovery × time) with repeated measures was used to determine measurement variables. A level of significance was set at P < .05. Results: No significant changes in swimming time were observed between trials (AR: 156.79 [4.09] vs 157.79 [4.23] s, CR: 156.50 [4.89] vs 155.55 [4.86] s, PR: 156.54 [4.70] vs 156.30 [4.52] s) across recovery conditions. Interestingly, tissue saturation index rapidly declined immediately after a 200-m swim and then gradually returned to baseline, with a greater value observed during CR compared with AR and PR after 15-minute recovery (P = .04). These changes were concomitant with significant reductions in blood lactate and heart rate during the recovery period (P = .00). Conclusion: The CR in the present study was more effective in enhancing muscle reoxygenation after a 200-m swim compared with AR and PR, albeit its beneficial effect on subsequent performance warrants further investigation.

The authors are with the Dept of Sports Science, Faculty of Sports Science, Chulalongkorn University, Bangkok, Thailand.

Yimlamai (Tossaporn.Y@chula.ac.th) is corresponding author.
  • 1.

    McGibbon KE, Pyne D, Shephard M, Thompson K. Pacing in swimming: a systematic review. Sports Med. 2018;48(7):16211633. PubMed ID: 29560605 doi:10.1007/s40279-018-0901-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Maglischo EW. Swimming Fastest. Champaign, IL: Human Kinetics; 2003.

  • 3.

    Toubekis AG, Tsolaki A, Smilios I, Douda HT, Kourtesis T, Tokmakidis SP. Swimming performance after passive and active recovery of various durations. Int J Sports Physiol. 2008;3(3):375386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Figueiredo P, Pendergast DR, Vilas-Boas JP, Fernandes RJ. Interplay of biomechanical, energetic, coordinative, and muscular factors in a 200 m front crawl swim. Biomed Res Int. 2013;2013:897232. PubMed ID: 23586063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Buchheit M, Ufland P. Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur J Appl Physiol. 2011;111(2):293301. PubMed ID: 20872150 doi:10.1007/s00421-010-1654-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ferrari M, Muthalib M, Quaresima V. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos Trans A Math Phys Eng Sci. 2011;369(1955):45774590. PubMed ID: 22006907 doi:10.1098/rsta.2011.0230

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jones B, Parry D, Cooper CE. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers. PeerJ. 2018;6:e4393.

  • 8.

    Jones B, Dat M, Cooper CE. Underwater near-infrared spectroscopy measurements of muscle oxygenation: laboratory validation and preliminary observations in swimmers and triathletes. J Biomed Opt. 2014;19(12):127002. PubMed ID: 25478871 doi:10.1117/1.JBO.19.12.127002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McCully K, Iotti S, Kendrick K, et al. Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J Appl Physiol. 1994;77(1):510. PubMed ID: 7961273 doi:10.1152/jappl.1994.77.1.5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tokmakidis SP, Toubekis AG, Smilios I. Active Versus Passive Recovery: Metabolic Limitations and Performance Outcome. New York, NY: Nova Science Publishers; 2011.

    • Search Google Scholar
    • Export Citation
  • 11.

    Dupont G, Moalla W, Guinhouya C, Ahmaidi S, Berthoin S. Passive versus active recovery during high-intensity intermittent exercises. Med Sci Sports Exerc. 2004;36(2):302308. PubMed ID: 14767255 doi:10.1249/01.MSS.0000113477.11431.59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dupont G, Moalla W, Matran R, Berthoin S. Effect of short recovery intensities on the performance during two Wingate tests. Med Sci Sports Exerc. 2007;39(7):11701176. PubMed ID: 17596786 doi:10.1249/mss.0b013e31804c9976

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Spencer M, Bishop D, Dawson B, Goodman C, Duffield R. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc. 2006;38(8):14921499. PubMed ID: 16888464 doi:10.1249/01.mss.0000228944.62776.a7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs passive recovery. Eur J Appl Physiol. 2003;89(6):548554. PubMed ID: 12734760 doi:10.1007/s00421-003-0834-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Toubekis AG, Smilios I, Bogdanis GC, Mavridis G, Tokmakidis SP. Effect of different intensities of active recovery on sprint swimming performance. Appl Physiol Nutr Metab. 2006;31(6):709716. PubMed ID: 17213885 doi:10.1139/h06-075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Costalat G, Coquart J, Castres I, et al. The oxygen-conserving potential of the diving response: a kinetic-based analysis. J Sports Sci. 2017;35(7):678687. PubMed ID: 27167834 doi:10.1080/02640414.2016.1183809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mota MR, Dantas RAE, Oliveira-Silva I, et al. Effect of self-paced active recovery and passive recovery on blood lactate removal following a 200 m freestyle swimming trial. Open Access J Sports Med. 2017;8:155160. PubMed ID: 28721108 doi:10.2147/OAJSM.S127948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Billaut F, Buchheit M. Repeated-sprint performance and vastus lateralis oxygenation: effect of limited O2 availability. Scand J Med Sci Sports. 2013;23(3):e185e193. PubMed ID: 23362832 doi:10.1111/sms.12052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ. An energy balance of the 200 m front crawl race. Eur J Appl Physiol. 2011;111(5):767777. PubMed ID: 20978781 doi:10.1007/s00421-010-1696-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29(4):463487. PubMed ID: 15328595 doi:10.1139/h04-031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Vescovi JD, Falenchuk O, Wells GD. Blood lactate concentration and clearance in elite swimmers during competition. Int J Sports Physiol Perform. 2011;6(1):106117. PubMed ID: 21487154 doi:10.1123/ijspp.6.1.106

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Thomas C, Perrey S, Lambert K, Hugon G, Mornet D, Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. J Appl Physiol. 2005;98(3):804809. PubMed ID: 15531559 doi:10.1152/japplphysiol.01057.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Lawler J, Powers SK, Thompson D. Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia. J Appl Physiol. 1988;64(4):14861492. PubMed ID: 3378983 doi:10.1152/jappl.1988.64.4.1486

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Buchheit M, Cormie P, Abbiss C, Ahmaidi S, Nosaka KK, Laursen P. Muscle deoxygenation during repeated sprint running: effect of active vs passive recovery. Int J Sports Med. 2009;30(06):418425. doi:10.1055/s-0028-1105933

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cairns SP. Lactic acid and exercise performance. Sports Med. 2006;36(4):279291. PubMed ID: 16573355 doi:10.2165/00007256-200636040-00001

All Time Past Year Past 30 Days
Abstract Views 513 513 191
Full Text Views 22 22 6
PDF Downloads 13 13 6