Preexercise Cycling Protocol Alters Pacing Behavior in Competitive Time Trials

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The behavior of an opponent has been shown to alter pacing and performance. To advance our understanding of the impact of perceptual stimuli such as an opponent on pacing and performance, this study examined the effect of a preexercise cycling protocol on exercise regulation with and without an opponent. Methods: Twelve trained cyclists performed 4 experimental, self-paced 4-km time-trial conditions on an advanced cycle ergometer in a randomized, counterbalanced order. Participants started the time trial in rested state (RS) or performed a 10-min cycling protocol at 67% peak power output (CP) before the time trial. During the time trials, participants had to ride alone (NO) or against a virtual opponent (OP). The experimental conditions were (1) RS-NO, (2) RS-OP, (3) CP-NO, and (4) CP-OP. Repeated-measures analyses of variance (P < .05) were used to examine differences in pacing and performance in terms of power output. Results: A faster pace was adopted in the first kilometer during RS-OP (318 [72] W) compared with RS-NO (291 [81] W; P = .03), leading to an improved finishing time during RS-OP compared with RS-NO (P = .046). No differences in either pacing or performance were found between CP-NO and CP-OP. Conclusions: The evoked response by the opponent to adopt a faster initial pace in the 4-km time trial disappeared when cyclists had to perform a preceding cycling protocol. The outcomes of this study highlight that perceived exertion alters the responsiveness to perceptual stimuli of cyclists during competition.

The authors are with the School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom. Konings is also with the Faculty of Movement and Rehabilitation Sciences, KU Leuven Campus Bruges, Bruges, Belgium. Hettinga is also with the Dept of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom.

Hettinga (florentina.hettinga@northumbria.ac.uk) is corresponding author.
  • 1.

    Smits BL, Pepping G-J, Hettinga FJ. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sports Med. 2014;44(6):763775. PubMed ID: 24706362 doi:10.1007/s40279-014-0163-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Edwards AM, Polman RC. Pacing and awareness: brain regulation of physical activity. Sports Med. 2013;43(11):10571064. PubMed ID: 23990402 doi:10.1007/s40279-013-0091-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Konings MJ, Hettinga FJ. Pacing decision-making in sport and the effects of interpersonal competition: a critical review. Sports Med. 2018;48(8):18291843. PubMed ID: 29799094 doi:10.1007/s40279-018-0937-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ulmer H. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416420. PubMed ID: 8641377 doi:10.1007/BF01919309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Foster C, Hendrickson K, Peyer K, et al. Pattern of developing the performance template. Br J Sports Med. 2009;43(10):765769. PubMed ID: 19124526 doi:10.1136/bjsm.2008.054841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Roelands B, De Koning JJ, Foster C, Hettinga FJ, Meeusen R. Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Med. 2013;43(5):301311. PubMed ID: 23456493 doi:10.1007/s40279-013-0030-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Swart J, Lamberts RP, Lambert MI, et al. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. Br J Sports Med. 2009;43:775781. PubMed ID: 19211587 doi:10.1136/bjsm.2008.056036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Blain GM, Mangum TS, Sidhu SK, et al. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol. 2016;594(18):53035315. doi:10.1113/JP272283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161173. PubMed ID: 17962334 doi:10.1113/jphysiol.2007.141838

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Correia-Oliveira CR, Santos RA, Silva-Cavalcante MD, et al. Prior low- or high-intensity exercise alters pacing strategy, energy system contribution and performance during a 4-km cycling time trial. PLoS One. 2014;9(10):e110320. PubMed ID: 25330452 doi:10.1371/journal.pone.0110320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    De Morree HM, Marcora SM. Effects of isolated locomotor muscle fatigue on pacing and time trial performance. Eur J Appl Physiol. 2013;113(9):23712380. PubMed ID: 23756830 doi:10.1007/s00421-013-2673-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Amann M. Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc. 2011;43(11):20392045. PubMed ID: 21502884 doi:10.1249/MSS.0b013e31821f59ab

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Froyd C, Millet GY, Noakes TD. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol. 2013;591(5):13391346. PubMed ID: 23230235 doi:10.1113/jphysiol.2012.245316

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537546. PubMed ID: 25051388 doi:10.1249/MSS.0000000000000448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Micklewright D, Kegerreis S, Raglin J, Hettinga FJ. Will the conscious–subconscious pacing quagmire help elucidate the mechanisms of self-paced exercise? New opportunities in dual process theory and process tracing methods. Sports Med. 2017;47(7):12311239. PubMed ID: 27778303 doi:10.1007/s40279-016-0642-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hettinga FJ, Konings MJ, Pepping G-J. The science of racing against opponents: affordance competition and the regulation of exercise intensity in head-to-head competition. Front Physiol. 2017;8:118. PubMed ID: 28293199 doi:10.3389/fphys.2017.00118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Konings MJ, Schoenmakers PP, Walker A, Hettinga FJ. The behavior of an opponent alters pacing decisions in 4-km cycling time trials. Physiol Behav. 2016;158(1):15. doi:10.1016/j.physbeh.2016.02.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Corbett J, Barwood MJ, Ouzounoglou A, Thelwell R, Dicks M. Influence of competition on performance and pacing during cycling exercise. Med Sci Sports Exerc. 2012;44(3):509515. PubMed ID: 21900846 doi:10.1249/MSS.0b013e31823378b1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Williams EL, Jones HS, Sparks SA, Marchant DC, Midgley AW, McNaughton LR. Competitor presence reduces internal attentional focus and improves 16.1 km cycling time trial performance. J Sci Med Sport. 2015;18(4):486491. PubMed ID: 25085709 doi:10.1016/j.jsams.2014.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Konings MJ, Parkinson J, Zijdewind I, Hettinga FJ. Racing an opponent: alteration of pacing, performance, and muscle-force decline but not rating of perceived exertion. Int J Sports Physiol Perform. 2018;13(3):283289. PubMed ID: 28657853 doi:10.1123/ijspp.2017-0220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tomazini F, Pasqua LA, Damasceno MV, et al. Head-to-head running race simulation alters pacing strategy, performance, and mood state. Physiol Behav. 2015;149:3944. PubMed ID: 26013576 doi:10.1016/j.physbeh.2015.05.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Williams EL, Jones HS, Sparks SA, et al. Altered psychological responses to different magnitudes of deception during cycling. Med Sci Sports Exerc. 2015;47(11):24232430. PubMed ID: 25970660 doi:10.1249/MSS.0000000000000694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Corbett J, White DK, Barwood MJ, et al. The effect of head-to-head competition on behavioural thermoregulation, thermophysiological strain and performance during exercise in the heat. Sports Med. 2018;48(5):12691279. PubMed ID: 29147922 doi:10.1007/s40279-017-0816-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cardinal BJ, Esters J, Cardinal MK. Evaluation of the revised physical activity readiness questionnaire in older adults. Med Sci Sports Exerc. 1996;28(4):468472. PubMed ID: 8778552 doi:10.1097/00005768-199604000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    De Koning JJ, Foster C, Bakkum A, et al. Regulation of pacing strategy during athletic competition. PLoS One. 2011;6(1):e15863. PubMed ID: 21283744 doi:10.1371/journal.pone.0015863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    St Clair Gibson A, Lambert EV, Rauch LH, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705722. PubMed ID: 16869711 doi:10.2165/00007256-200636080-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Abbiss CR, Peiffer JJ, Meeusen R, Skorski S. Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Med. 2015;45(9):12351243. PubMed ID: 26054383 doi:10.1007/s40279-015-0344-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Marcora SM, Staiano W. The limit to exercise tolerance in humans: mind over muscle? Eur J Appl Physiol. 2010;109:763770. PubMed ID: 20221773 doi:10.1007/s00421-010-1418-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Périard JD, Racinais S. Performance and pacing during cycle exercise in hyperthermic and hypoxic conditions. Med Sci Sports Exerc. 2016;48(5):845853. PubMed ID: 26656777 doi:10.1249/MSS.0000000000000839

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tucker R, Kayser B, Rae E, Rauch LH, Bosch AN, Noakes TD. Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. Eur J Appl Physiol. 2007;101(6):771781. PubMed ID: 17909845 doi:10.1007/s00421-007-0458-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Skorski S, Hammes D, Schwindling S, et al. Effects of training-induced fatigue on pacing patterns in 40-km cycling time trials. Med Sci Sports Exerc. 2015;47(3):593600. PubMed ID: 25003772 doi:10.1249/MSS.0000000000000439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hettinga FJ, De Koning JJ, Foster C. VO2 response in supramaximal cycling time trial exercise of 750 to 4000 m. Med Sci Sports Exerc. 2009;41(1):230236. PubMed ID: 19092684 doi:10.1249/MSS.0b013e3181831f0f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 451 451 124
Full Text Views 27 27 9
PDF Downloads 18 18 6