A Contemporary Variable-Power Cycling Protocol to Discriminate Race-Specific Performance Ability

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Avish P. Sharma
Search for other papers by Avish P. Sharma in
Current site
Google Scholar
PubMed
Close
,
David J. Bentley
Search for other papers by David J. Bentley in
Current site
Google Scholar
PubMed
Close
,
Gaizka Mejuto
Search for other papers by Gaizka Mejuto in
Current site
Google Scholar
PubMed
Close
, and
Naroa Etxebarria
Search for other papers by Naroa Etxebarria in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Traditional physiological testing and monitoring tools have restricted our ability to capture parameters that best relate to cycling performance under variable-intensity race demands. This study examined the validity of a 1-h variable cycling test (VCT) to discriminate between different-performance-level cyclists. Methods: Ten male national- and 13 club-level cyclists (body mass, 67 [9] and 79 [6] kg; peak power output, 359 [43] and 362 [21] W, respectively) completed a VO2max test and two 1-h VCT protocols on 3 separate occasions. The VCT consisted of 10 × 6-min segments containing prescribed (3.5 W·kg−1) and open-ended phases. The open-ended phases consisted of 4 × 30–40 s of “recovery,” 3 × 10 s at “hard” intensity, and 3 × 6-s “sprint” with a final 10-s “all-out” effort. Results: Power output for the 6- and 10-s phases was moderately higher for the national- compared with club-level cyclists (mean [SD] 10.4 [2.0] vs 8.6 [1.6] W·kg−1, effect size; ±90% confidence limits = −0.87; ±0.65 and mean [SD] 7.5 [0.7] vs 6.2 [1.0] W·kg−1, effect size; ±90% confidence limits = −1.24; ±0.66, respectively). Power output for the final 10-s “all-out” sprint was 15.4 (1.5) for the national- versus 13.2 (1.9) W·kg−1 for club-level cyclists. Conclusion: The 1-h VCT can successfully differentiate repeat high-intensity effort performance between higher-caliber cyclists and their lower-performing counterparts.

Sharma is with Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia, and Triathlon Australia, Burleigh Heads, QLD, Australia. Bentley is with Exercise and Sport Science, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia. Mejuto is with the Physical Education Dept, University of the Basque Country, Leioa, Basque Country. Etxebarria is with the Research Inst for Sport and Exercise, University of Canberra, Canberra, ACT, Australia.

Etxebarria (naroa.etxebarria@canberra.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Bentley DJ, Newell J, Bishop D. Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med. 2007;37(7):575586. PubMed ID: 17595153 doi:10.2165/00007256-200737070-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fernandez-Garcia B, Perez-Landaluce J, Rodriguez-Alonso M, Terrados N. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc. 2000;32(5):10021006. PubMed ID: 10795793 doi:10.1097/00005768-200005000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lucia A, Hoyos J, Chicharro JL. Physiology of professional road cycling. Sports Med. 2001;31(5):325337. PubMed ID: 11347684 doi:10.2165/00007256-200131050-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hopkins SR, McKenzie DC. The laboratory assessment of endurance performance in cyclists. Can J Appl Physiol. 1994;19(3):266274. PubMed ID: 8000353 doi:10.1139/h94-022

  • 5.

    Peiffer JJ, Abbiss CR, Haakonssen EC, Menaspa P. Sprinting for the win: distribution of power output in women’s professional cycling. Int J Sports Physiol Perform. 2018;13(9):12371242. PubMed ID: 29688105 doi:10.1123/ijspp.2017-0757

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Abbiss CR, Menaspa P, Villerius V, Martin DT. Distribution of power output when establishing a breakaway in cycling. Int J Sports Physiol Perform. 2013;8(4):452455. PubMed ID: 23539668 doi:10.1123/ijspp.8.4.452

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Etxebarria N, D’Auria S, Anson JM, Pyne DB, Ferguson RA. Variability in power output during cycling in international Olympic-distance triathlon. Int J Sports Physiol Perform. 2014;9(4):732734. PubMed ID: 24235776 doi:10.1123/ijspp.2013-0303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Menaspa P, Sias M, Bates G, La Torre A. Demands of world cup competitions in elite women’s road cycling. Int J Sports Physiol Perform. 2017;12(10):12931296. PubMed ID: 28253040 doi:10.1123/ijspp.2016-0588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pettitt RW, Clark IE, Ebner SM, Sedgeman DT, Murray SR. Gas exchange threshold and VO2max testing for athletes: an update. J Strength Cond Res. 2013;27(2):549555. PubMed ID: 22531615 doi:10.1519/JSC.0b013e31825770d7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PLoS One. 2018;13(7):e0199794. PubMed ID: 30059543 doi:10.1371/journal.pone.0199794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Etxebarria N, Anson JM, Pyne DB, Ferguson RA. Cycling attributes that enhance running performance after the cycle section in triathlon. Int J Sports Physiol Perform. 2013;8(5):502509. PubMed ID: 23347994 doi:10.1123/ijspp.8.5.502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sharma AP, Elliott AD, Bentley DJ. Reliability and validity of a new variable-power performance test in road cyclists. Int J Sports Physiol Perform. 2015;10(3):278284. PubMed ID: 25117436 doi:10.1123/ijspp.2014-0013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Ebert TR, Martin DT, Stephens B, Withers RT. Power output during a professional men’s road-cycling tour. Int J Sports Physiol Perform. 2006;1(4):324335. PubMed ID: 19124890 doi:10.1123/ijspp.1.4.324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Abbiss CR, Levin G, McGuigan MR, Laursen PB. Reliability of power output during dynamic cycling. Int J Sports Med. 2008;29(7):574578. PubMed ID: 18050055 doi:10.1055/s-2007-989263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Driller MW, Argus CK, Bartram JC, et al. Reliability of a 2-bout exercise test on a wattbike cycle ergometer. Int J Sports Physiol Perform. 2014;9(2):340345. PubMed ID: 23920473 doi:10.1123/ijspp.2013-0103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Curran-Everett D. Explorations in statistics: confidence intervals. Adv Physiol Educ. 2009;33(2):8790. PubMed ID: 19509392 doi:10.1152/advan.00006.2009

  • 18.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Menaspa P, Quod M, Martin DT, Peiffer JJ, Abbiss CR. Physical demands of sprinting in professional road cycling. Int J Sports Med. 2015;36(13):10581062. PubMed ID: 26252551 doi:10.1055/s-0035-1554697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lucia A, Joyos H, Chicharro JL. Physiological response to professional road cycling: climbers vs time trialists. Int J Sports Med. 2000;21(7):505512. PubMed ID: 11071054 doi:10.1055/s-2000-7420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Padilla S, Mujika I, Cuesta G, Goiriena JJ. Level ground and uphill cycling ability in professional road cycling. Med Sci Sports Exerc. 1999;31(6):878885. PubMed ID: 10378916 doi:10.1097/00005768-199906000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rodriguez-Marroyo JA, Garcia Lopez J, Avila C, Jiménez F, Cordova A, Villa Vicente JG. Intensity of exercise according to topography in professional cyclists. Med Sci Sports Exerc. 2003;35(7):12091215. PubMed ID: 12840644 doi:10.1249/01.MSS.0000074562.64053.4F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2267 566 9
Full Text Views 44 7 0
PDF Downloads 50 4 0