Effectiveness of Accentuated Eccentric Loading: Contingent on Concentric Load

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To identify acute effects of a single accentuated eccentric loading (AEL) repetition on subsequent back-squat kinetics and kinematics with different concentric loads. Methods: Resistance-trained men (N = 21) participated in a counterbalanced crossover design and completed 4 protocols (sets × repetitions at eccentric/concentric) as follows: AEL65, 3 × 5 at 120%/65% 1-repetition maximum (1-RM); AEL80, 3 × 3 at 120%/80% 1-RM; TRA65, 3 × 5 at 65%/65% 1-RM; and TRA80, 3 × 3 at 80%/80% 1-RM. During AEL, weight releasers disengaged from the barbell after the eccentric phase of the first repetition and remained off for the remaining repetitions. All repetitions were performed on a force plate with linear position transducers attached to the barbell, from which eccentric and concentric peak and mean velocity, force, and power were derived. Results: Eccentric peak velocity (−0.076 [0.124] m·s−1; P = .01), concentric peak force (187.8 [284.4] N; P = .01), eccentric mean power (−145.2 [62.0] W; P = .03), and eccentric peak power (−328.6 [93.7] W; P < .01) during AEL65 were significantly greater than TRA65. When collapsed across repetitions, AEL65 resulted in slower eccentric velocity and power during repetition 1 but faster eccentric and concentric velocity and power in subsequent repetitions (P ≤ .04). When comparing AEL80 with TRA80, concentric peak force (133.8 [56.9] N; P = .03), eccentric mean power (−83.57 [38.0] W; P = .04), and eccentric peak power (−242.84 [67.3] W; P < .01) were enhanced. Conclusions: Including a single supramaximal eccentric phase of 120% 1-RM increased subsequent velocity and power with concentric loads of 65% 1-RM, but not 80% 1-RM. Therefore, AEL is sensitive to the magnitude of concentric loads, which requires a large relative difference to the eccentric load, and weight releasers may not need to be reloaded to induce performance enhancement.

Merrigan and Jones are with the Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA, USA. Merrigan, Falzone, and Jones are with the School of Kinesiology, George Mason University, Manassas, VA, USA. Tufano is with the Dept of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic.

Jones (mjones15@gmu.edu) is corresponding author.
  • 1.

    Rassier DE, Macintosh BR. Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res. 2000;33(5):499508. PubMed ID: 10775880 doi:10.1590/S0100-879X2000000500003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Friedmann B, Kinscherf R, Vorwald S, et al. Muscular adaptations to computer-guided strength training with eccentric overload. Acta Physiol Scand. 2004;182(1):7788. PubMed ID: 15329060 doi:10.1111/j.1365-201X.2004.01337.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wagle JP, Taber CB, Cunanan AJ, et al. Accentuated eccentric loading for training and performance: a review. Sports Med. 2017;47(12):24732495. PubMed ID: 28681170 doi:10.1007/s40279-017-0755-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dietz V, Noth J, Schmidtbleicher D. Interaction between pre-activity and stretch reflex in human triceps brachii during landing from forward falls. J Physiol. 1981;311:113125. PubMed ID: 7264966 doi:10.1113/jphysiol.1981.sp013576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bridgeman LA, McGuigan MR, Gill ND, Dulson DK. The effects of accentuated eccentric loading on the drop jump exercise and the subsequent postactivation potentiation response. J Strength Cond Res. 2017;31(6):16201626. PubMed ID: 28538313 doi:10.1519/JSC.0000000000001630

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Doan BK, Newton RU, Marsit JL, et al. Effects of increased eccentric loading on bench press 1RM. J Strength Cond Res. 2002;16(1):9. PubMed ID: 11834100

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ojasto T, Häkkinen K. Effects of different accentuated eccentric load levels in eccentric-concentric actions on acute neuromuscular, maximal force, and power responses. J Strength Cond Res. 2009;23(3):9961004. PubMed ID: 19387375 doi:10.1519/JSC.0b013e3181a2b28e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Munger CN, Archer DC, Leyva WD, et al. Acute effects of eccentric overload on concentric front squat performance. J Strength Cond Res. 2017;31(5):11921197. PubMed ID: 28151781 doi:10.1519/JSC.0000000000001825

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Moore CA, Weiss LW, Schilling BK, Fry AC, Li Y. Acute effects of augmented eccentric loading on jump squat performance. J Strength Cond Res. 2007;21(2):372. PubMed ID: 17530944

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wagle JP, Taber CB, Carroll KM, et al. Repetition-to-repetition differences using cluster and accentuated eccentric loading in the back squat. Sports. 2018;6(3):59. doi:10.3390/sports6030059

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wagle JP, Cunanan AJ, Carroll KM, et al. Accentuated eccentric loading and cluster set configurations in the back squat: a kinetic and kinematic analysis [published online ahead of print June 20, 2018]. J Strength Cond Res. PubMed ID: 29927889 doi:10.1519/JSC.0000000000002677

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pasquet B, Carpentier A, Duchateau J, Hainaut K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve. 2000;23(11):17271735. PubMed ID: 11054752 doi:10.1002/1097-4598(200011)23:11%3C1727::AID-MUS9%3E3.0.CO;2-Y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Henneman E, Somjen G, Carpenter DO. Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 1965;28(3):599620. PubMed ID: 5835487 doi:10.1152/jn.1965.28.3.599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Rack PMH, Westbury DR. The short range stiffness of active mammalian muscle and its effect on mechanical properties. J Physiol. 1974;240(2):331350. PubMed ID: 4424163 doi:10.1113/jphysiol.1974.sp010613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cormie P, McGuigan M, Newton RU. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med Sci Sports Exerc. 2010;42(9):17311744. PubMed ID: 20142784 doi:10.1249/MSS.0b013e3181d392e8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Harden M, Wolf A, Russell M, Hicks KM, French D, Howatson G. An evaluation of supramaximally loaded eccentric leg press exercise. J Strength Cond Res. 2018;32(10):27082714. PubMed ID: 29470362 doi:10.1519/JSC.0000000000002497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cormie P, McBride JM, McCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103118. PubMed ID: 17603130 doi:10.1123/jab.23.2.103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Girden ER. ANOVA: Repeated MeasuresNewbury Park, CA: Sage; 1992:84.

  • 19.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Nardone A, Romanò C, Schieppati M. Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol. 1989;409(1):451471. doi:10.1113/jphysiol.1989.sp017507

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Linari M, Bottinelli R, Pellegrino MA, Reconditi M, Reggiani C, Lombardi V. The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms. J Physiol. 2004;554(2):335352. doi:10.1113/jphysiol.2003.051748

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Linari M, Lucii L, Reconditi M, et al. A combined mechanical and X-ray diffraction study of stretch potentiation in single frog muscle fibres. J Physiol. 2000;526(3):589596. doi:10.1111/j.1469-7793.2000.00589.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Griffin JW, Tooms RE, vander Zwaag R, Bertorini TE, O’Toole ML. Eccentric muscle performance of elbow and knee muscle groups in untrained men and women. Med Sci Sports Exerc. 1993;25(8):936944. PubMed ID: 8371655 doi:10.1249/00005768-199308000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Duchateau J, Enoka RM. Neural control of lengthening contractions. J Exp Biol. 2016;219(2):197204. doi:10.1242/jeb.123158

  • 25.

    Amiridis IG, Martin A, Morlon B, et al. Co-activation and tension-regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol Occup Physiol. 1996;73(1–2):149156. doi:10.1007/BF00262824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Herzog W. The role of titin in eccentric muscle contraction. J Exp Biol. 2014;217(pt 16):28252833. PubMed ID: 25122914 doi:10.1242/jeb.099127

  • 27.

    Leonard TR, Herzog W. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am J Physiol Cell Physiol. 2010;299(1):1420. doi:10.1152/ajpcell.00049.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Soriano MA, Jiménez-Reyes P, Rhea MR, Marín PJ. The optimal load for maximal power production during lower-body resistance exercises: a meta-analysis. Sports Med. 2015;45(8):11911205. PubMed ID: 26063470 doi:10.1007/s40279-015-0341-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Askow AT, Merrigan JJ, Neddo JM, et al. Effect of strength on velocity and power during back squat exercise in resistance-trained men and women. J Strength Cond Res. 2019;33(1):17. PubMed ID: 30431534 doi:10.1519/JSC.0000000000002968

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 417 417 221
Full Text Views 12 12 0
PDF Downloads 15 15 0