Electromyographic Comparison of Flywheel Inertial Leg Curl and Nordic Hamstring Exercise Among Soccer Players

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Helene Pedersen
Search for other papers by Helene Pedersen in
Current site
Google Scholar
PubMed
Close
,
Atle Hole Saeterbakken
Search for other papers by Atle Hole Saeterbakken in
Current site
Google Scholar
PubMed
Close
,
Markus Vagle
Search for other papers by Markus Vagle in
Current site
Google Scholar
PubMed
Close
,
Marius Steiro Fimland
Search for other papers by Marius Steiro Fimland in
Current site
Google Scholar
PubMed
Close
, and
Vidar Andersen
Search for other papers by Vidar Andersen in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The Nordic hamstring exercise (NHE) has been shown to considerably reduce hamstring injuries among soccer players. However, as the load in the NHE is the person’s own bodyweight, it is a very heavy exercise and difficult to individualize. The flywheel inertial leg curl (FLC) could be an alternative since the eccentric overload is based on the amount of work produced in the concentric movement. Therefore, the primary aim of this study was to compare the activation in the hamstrings at long muscle lengths in the NHE and the FLC in amateur soccer players. Methods: Fifteen male amateur soccer players performed 5 repetitions in each exercise in a randomized and counterbalanced order. The concentric and eccentric movements were divided into lower and upper phases. Surface EMG was measured distally, proximally, and in the middle, at both muscles. Results: In the lower phase in the eccentric movement, there were no significant differences between the 2 exercises (P = .101–.826). In the lower concentric movement, the FLC led to higher activation in all parts of both the biceps femoris (31%–52%, P < .001) and the semitendinosus (20%–35%, P = .001–.023). Conclusion: Both exercises activated the hamstrings similarly at long muscle lengths during eccentric contractions (Nordic hamstring, nonsignificantly higher). However, when performing concentric contractions, the FLC induced higher activations. Therefore, the FLC could be a useful alternative to the NHE and particularly suitable for weaker athletes before progressing to NHE.

Pedersen, Saeterbakken, and Andersen are with the Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, Norway. Vagle is with the Faculty of Humanities, Sports, and Educational Science, University of South-Eastern Norway, Tonsberg, Norway. Fimland is with the Dept of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; and the Unicare Helsefort Rehabilitation Centre, Rissa, Norway.

Andersen (vidar.andersen@hvl.no) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Al Attar WSA, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 2017;47(5):907916. PubMed ID: 27752982 doi:10.1007/s40279-016-0638-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Petersen J, Thorborg K, Nielsen MB, Budtz-Jorgensen E, Holmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):22962303. PubMed ID: 21825112 doi:10.1177/0363546511419277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bourne MN, Timmins RG, Opar DA, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251267. PubMed ID: 29116573 doi:10.1007/s40279-017-0796-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mendiguchia J, Garrues MA, Cronin JB, et al. Nonuniform changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises. J Strength Cond Res. 2013;27(3):574581. PubMed ID: 23443215 doi:10.1519/JSC.0b013e31825c2f38

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hegyi A, Peter A, Finni T, Cronin NJ. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography. Scand J Med Sci Sports. 2018;28(3):9921000. PubMed ID: 29143379 doi:10.1111/sms.13016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kenneally-Dabrowski CJB, Brown NAT, Lai AKM, Perriman D, Spratford W, Serpell BG. Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand J Med Sci Sports. 2019;29(8):10831091. PubMed ID: 31033024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ditroilo M, De Vito G, Delahunt E. Kinematic and electromyographic analysis of the Nordic hamstring exercise. J Electromyogr Kinesiol. 2013;23(5):11111118. PubMed ID: 23809430 doi:10.1016/j.jelekin.2013.05.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hegyi A, Lahti J, Giacomo JP, Gerus P, Cronin NJ, Morin JB. Impact of hip flexion angle on unilateral and bilateral Nordic hamstring exercise torque and high-density electromyography activity. J Orthop Sports Phys Ther. 2019;49(8):584592. PubMed ID: 30913969 doi:10.2519/jospt.2019.8801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wagle JP, Taber CB, Cunanan AJ, et al. Accentuated eccentric loading for training and performance: a review. Sports Med. 2017;47(12):24732495. PubMed ID: 28681170 doi:10.1007/s40279-017-0755-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bahr R, Thorborg K, Ekstrand J. Evidence-based hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: the Nordic Hamstring survey. Br J Sports Med. 2015;49(22):14661471. PubMed ID: 25995308 doi:10.1136/bjsports-2015-094826

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Tsaklis P, Malliaropoulos N, Mendiguchia J, et al. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation. Open Access J Sports Med. 2015;6:209217. PubMed ID: 26170726

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nunez Sanchez FJ, Saez de Villarreal E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res. 2017;31(11):31773186. PubMed ID: 29068866 doi:10.1519/JSC.0000000000002095

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Vicens-Bordas J, Esteve E, Fort-Vanmeerhaeghe A, Bandholm T, Thorborg K. Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? A systematic review with meta-analyses. J Sci Med Sport. 2018;21(1):7583. PubMed ID: 29107539 doi:10.1016/j.jsams.2017.10.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Maroto-Izquierdo S, Garcia-Lopez D, Fernandez-Gonzalo R, Moreira OC, Gonzalez-Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2017;20(10):943951. PubMed ID: 28385560 doi:10.1016/j.jsams.2017.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Norrbrand L, Tous-Fajardo J, Vargas R, Tesch PA. Quadriceps muscle use in the flywheel and barbell squat. Aviat Space Environ Med. 2011;82(1):1319. PubMed ID: 21235100 doi:10.3357/ASEM.2867.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Suchomel TJ, Wagle JP, Douglas J, et al. Implementing eccentric resistance training—part 2: practical recommendations. J Funct Morphol Kinesiol. 2019;4(3):55. doi:10.3390/jfmk4030055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    McAllister MJ, Hammond KG, Schilling BK, Ferreria LC, Reed JP, Weiss LW. Muscle activation during various hamstring exercises. J Strength Cond Res. 2014;28(6):15731580. PubMed ID: 24149748 doi:10.1519/JSC.0000000000000302

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Miranda H, Maia M, de Oliveira CG, et al. Myoeletric indices of fatigue adopting different rest intervals during leg press sets. J Bodyw Mov Ther. 2018;22(1):178183. PubMed ID: 29332743 doi:10.1016/j.jbmt.2017.03.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Merletti R, Rainoldi A, Farina D. Surface electromyography for noninvasive characterization of muscle. Exerc Sport Sci Rev. 2001;29(1):2025. PubMed ID: 11210442 doi:10.1097/00003677-200101000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469477. PubMed ID: 27660368 doi:10.1136/bjsports-2016-096130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: L. Erlbaum Associates; 1988.

  • 23.

    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244250. PubMed ID: 12859607 doi:10.1034/j.1600-0838.2003.00312.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med. 2008;36(8):14691475. PubMed ID: 18448578 doi:10.1177/0363546508316764

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179(3):125141. PubMed ID: 15947463 doi:10.1159/000085004

  • 26.

    Boguszewski DV, Joshi NB, Yang PR, Markolf KL, Petrigliano FA, McAllister DR. Location of the natural knee axis for internal-external tibial rotation. Knee. 2016;23(6):10831088. PubMed ID: 27825594 doi:10.1016/j.knee.2015.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lynn SK, Costigan PA. Changes in the medial-lateral hamstring activation ratio with foot rotation during lower limb exercise. J Electromyogr Kinesiol. 2009;19(3):e197e205. PubMed ID: 18331800 doi:10.1016/j.jelekin.2008.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol. 2004;96(4):14861495. doi:10.1152/japplphysiol.01070.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front Physiol. 2017;8:985. PubMed ID: 29354060 doi:10.3389/fphys.2017.00985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Suchomel TJ, Wagle JP, Douglas J, et al. Implementing eccentric resistance training—part 1: a brief review of existing methods. J Funct Morphol Kinesiol. 2019;4(2):38. doi:10.3390/jfmk4020038

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6412 1703 80
Full Text Views 70 21 4
PDF Downloads 56 23 3