Intensified Training Supersedes the Impact of Heat and/or Altitude for Increasing Performance in Elite Rugby Union Players

Click name to view affiliation

Sebastien Racinais
Search for other papers by Sebastien Racinais in
Current site
Google Scholar
PubMed
Close
,
Julien D. Périard
Search for other papers by Julien D. Périard in
Current site
Google Scholar
PubMed
Close
,
Julien Piscione
Search for other papers by Julien Piscione in
Current site
Google Scholar
PubMed
Close
,
Pitre C. Bourdon
Search for other papers by Pitre C. Bourdon in
Current site
Google Scholar
PubMed
Close
,
Scott Cocking
Search for other papers by Scott Cocking in
Current site
Google Scholar
PubMed
Close
,
Mohammed Ihsan
Search for other papers by Mohammed Ihsan in
Current site
Google Scholar
PubMed
Close
,
Mathieu Lacome
Search for other papers by Mathieu Lacome in
Current site
Google Scholar
PubMed
Close
,
David Nichols
Search for other papers by David Nichols in
Current site
Google Scholar
PubMed
Close
,
Nathan Townsend
Search for other papers by Nathan Townsend in
Current site
Google Scholar
PubMed
Close
,
Gavin Travers
Search for other papers by Gavin Travers in
Current site
Google Scholar
PubMed
Close
,
Mathew G. Wilson
Search for other papers by Mathew G. Wilson in
Current site
Google Scholar
PubMed
Close
, and
Olivier Girard
Search for other papers by Olivier Girard in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To investigate whether including heat and altitude exposures during an elite team-sport training camp induces similar or greater performance benefits. Methods: The study assessed 56 elite male rugby players for maximal oxygen uptake, repeated-sprint cycling, and Yo-Yo intermittent recovery level 2 (Yo-Yo) before and after a 2-week training camp, which included 5 endurance and 5 repeated-sprint cycling sessions in addition to daily rugby training. Players were separated into 4 groups: (1) control (all sessions in temperate conditions at sea level), (2) heat training (endurance sessions in the heat), (3) altitude (repeated-sprint sessions and sleeping in hypoxia), and (4) combined heat and altitude (endurance in the heat, repeated sprints, and sleeping in hypoxia). Results: Training increased maximal oxygen uptake (4% [10%], P = .017), maximal aerobic power (9% [8%], P < .001), and repeated-sprint peak (5% [10%], P = .004) and average power (12% [14%], P < .001) independent of training conditions. Yo-Yo distance increased (16% [17%], P < .001) but not in the altitude group (P = .562). Training in heat lowered core temperature and increased sweat rate during a heat-response test (P < .05). Conclusion: A 2-week intensified training camp improved maximal oxygen uptake, repeated-sprint ability, and aerobic performance in elite rugby players. Adding heat and/or altitude did not further enhance physical performance, and altitude appears to have been detrimental to improving Yo-Yo.

Racinais, Périard, Cocking, Ihsan, Nichols, Townsend, Travers, Wilson, and Girard are with the Research and Scientific Support Dept, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar. Racinais and Lacome are also with the Laboratory of Sport, Expertise and Performance (EA 7370), Research Dept, French Inst of Sport (INSEP), Paris, France. Périard is also with the Research Inst for Sport and Exercise, University of Canberra, Canberra, ACT, Australia. Piscione and Lacome are with the Research Dept, French Rugby Union (FFR), Marcoussis, France. Bourdon is with the Sport Science Dept, ASPIRE Academy for Sports Excellence, Doha, Qatar, and the Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia. Ihsan is also with the Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore. Lacome is also with the Performance Dept, Paris Saint-Germain Football Club, Saint-Germain-en-Laye, France. Townsend is also with the College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar. Wilson is also with the Inst of Sport, Exercise and Health, University College London, London, United Kingdom. Girard is also with the School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA, Australia.

Racinais (sebastien.racinais@aspetar.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Chalmers S, Esterman A, Eston R, Bowering KJ, Norton K. Short-term heat acclimation training improves physical performance: a systematic review, and exploration of physiological adaptations and application for team sports. Sports Med. 2014;44(7):971988. doi:10.1007/s40279-014-0178-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Buchheit M, Voss SC, Nybo L, Mohr M, Racinais S. Physiological and performance adaptations to an in-season soccer camp in the heat: associations with heart rate and heart rate variability. Scand J Med Sci Sports. 2011;21(6):e477e485. doi:10.1111/j.1600-0838.2011.01378.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Racinais S, Mohr M, Buchheit M, et al. Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment. Br J Sports Med. 2012;46(11):810815. doi:10.1136/bjsports-2012-091227

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Buchheit M, Racinais S, Bilsborough J, et al. Adding heat to the live-high train-low altitude model: a practical insight from professional football. Br J Sports Med. 2013;47(suppl 1):i59i69. doi:10.1136/bjsports-2013-092559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Racinais S, Buchheit M, Bilsborough J, Bourdon PC, Cordy J, Coutts AJ. Physiological and performance responses to a training camp in the heat in professional Australian football players. Int J Sports Physiol Perform. 2014;9(4):598603. doi:10.1123/ijspp.2013-0284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    McLean BD, White K, Gore CJ, Kemp J. Blood volumes following preseason heat versus altitude: a case study of Australian footballers. Int J Sports Physiol Perform. 2020;15(4):590–594. 15. doi:10.1123/ijspp.2019-0350

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    McCleave EL, Slattery KM, Duffield R, et al. Impaired heat adaptation from combined heat training and “Live High, Train Low” hypoxia. Int J Sports Physiol Perform. 2019;14(5):635643. doi:10.1123/ijspp.2018-0399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Brocherie F, Millet GP, Hauser A, et al. “Live high-train low and high” hypoxic training improves team-sport performance. Med Sci Sports Exerc. 2015;47(10):21402149. doi:10.1249/MSS.0000000000000630

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Levine BD, Stray-Gundersen J. Point: positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99(5):20532055. doi:10.1152/japplphysiol.00877.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Brocherie F, Millet GP, D’Hulst G, Van Thienen R, Deldicque L, Girard O. Repeated maximal-intensity hypoxic exercise superimposed to hypoxic residence boosts skeletal muscle transcriptional responses in elite team-sport athletes. Acta Physiol. 2017;222(1): 1–11. doi:10.1111/apha.12851

    • Search Google Scholar
    • Export Citation
  • 11.

    Hamlin MJ, Olsen PD, Marshall HC, Lizamore CA, Elliot CA. Hypoxic repeat sprint training improves Rugby player’s repeated sprint but not endurance performance. Front Physiol. 2017;8:24. doi:10.3389/fphys.2017.00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Galvin HM, Cooke K, Sumners DP, Mileva KN, Bowtell JL. Repeated sprint training in normobaric hypoxia. Br J Sports Med. 2013;47(suppl 1):i74i79. doi:10.1136/bjsports-2013-092826

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Beard A, Ashby J, Kilgallon M, Brocherie F, Millet GP. Upper-body repeated-sprint training in hypoxia in international rugby union players. Eur J Sport Sci. 2019;19(9):11751183. doi:10.1080/17461391.2019.1587521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McCleave EL, Slattery KM, Duffield R, et al. Temperate performance benefits after heat, but not combined heat and hypoxic training. Med Sci Sports Exerc. 2017;49(3):509517. doi:10.1249/MSS.0000000000001138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rendell RA, Prout J, Costello JT, et al. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. Am J Physiol Regul Integr Comp Physiol. 2017;313(3):R191R201. doi:10.1152/ajpregu.00103.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Karlsen A, Racinais S, Jensen MV, Norgaard SJ, Bonne T, Nybo L. Heat acclimatization does not improve VO2max or cycling performance in a cool climate in trained cyclists. Scand J Med Sci Sports. 2015;25:269276. doi:10.1111/sms.12409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Keiser S, Flück D, Hüppin F, Stravs A, Hilty MP, Lundby C. Heat training increases exercise capacity in hot but not in temperate conditions: a mechanistic counter-balanced cross-over study. Am J Physiol Heart Circ Physiol. 2015;309(5):H750H761. doi:10.1152/ajpheart.00138.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Montero D, Lundby C. No improved performance with repeated-sprint training in hypoxia versus normoxia: a double-blind and crossover study. Int J Sports Physiol Perform. 2017;12(2):161167. doi:10.1123/ijspp.2015-0691

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. doi:10.1249/00005768-198205000-00012

  • 20.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test. Sports Med. 2008;38(1):3751. doi:10.2165/00007256-200838010-00004

  • 21.

    Roxane B, Chandrou KO, Alexandre CP, et al. Gastrointestinal thermal homogeneity and effect of cold water ingestion. J Therm Biol. 2018;78:204208. doi:10.1016/j.jtherbio.2018.10.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    ASHRAE. Thermal comfort conditions.  NewYork, NY: ASHRAE standard; 19 66.

  • 23.

    Bedford T. The Warmth Factor in Comfort at Work: A Physiological Study of Heating and Ventilation. London, UK: H. M. Stationery off.; 1936:1.

    • Search Google Scholar
    • Export Citation
  • 24.

    Travers G, Nichols D, Riding N, González-Alonso J, Périard JD. Heat acclimation with controlled heart rate: influence of hydration status. Med Sci Sports Exerc. 2020;52(8):18151824. doi:10.1249/MSS.0000000000002320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Périard JD, Racinais S. Self-paced exercise in hot and cool conditions is associated with the maintenance of % V ˙ O 2 peak within a narrow range. J Appl Physiol. 2015;118(10):12581265. doi:10.1152/japplphysiol.00084.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Beard A, Ashby J, Chambers R, Brocherie F, Millet GP. Repeated-sprint training in hypoxia in international rugby union players. Int J Sports Physiol Perform. 2019;14(6):850854. doi:10.1123/ijspp.2018-0170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hooper SL, Mackinnon LT. Monitoring overtraining in athletes. Recommendations. Sports Med. 1995;20(5):321327. doi:10.2165/00007256-199520050-00003

  • 28.

    Roach RC, Bärtsch P, Hackett PH, Oelz O. The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G, eds. Hypoxia and Molecular Medicine. Burlington, VT: Queen City Press; 1993:272274.

    • Search Google Scholar
    • Export Citation
  • 29.

    Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):11401147. doi:10.1152/japplphysiol.00495.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hostrup M, Gunnarsson TP, Fiorenza M, et al. In‐season adaptations to intense intermittent training and sprint interval training in sub‐elite football players. Scand J Med Sci Sports. 2019;29(5):669677. doi:10.1111/sms.13395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Duvnjak-Zaknich DM, Wallman KE, Dawson BT, Peeling P. Continuous and intermittent heat acclimation and decay in team sport athletes. Eur J Sport Sci. 2019;19(3):295304. doi:10.1080/17461391.2018.1512653

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42(5):327333. doi:10.1136/bjsm.2007.034207

  • 33.

    Philp CP, Buchheit M, Kitic CM, Minson CT, Fell JW. Does short-duration heat exposure at a matched cardiovascular intensity improve intermittent-running performance in a cool environment? Int J Sports Physiol Perform. 2017;12(6):812818. doi:10.1123/ijspp.2016-0072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Grgic J, Oppici L, Mikulic P, Bangsbo J, Krustrup P, Pedisic Z. Test-retest reliability of the Yo-Yo test: a systematic review. Sports Med. 2019;49(10):15471557. doi:10.1007/s40279-019-01143-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Gale RM, Etxebarria N, Pumpa KL, Pyne DB. Cycling-based repeat sprint training in the heat enhances running performance in team sport players. Eur J Sport Sci. 2020;6(1):110. doi:10.1080/17461391.2020.1759696

    • Search Google Scholar
    • Export Citation
  • 36.

    White AC, Salgado RM, Schneider S, Loeppky JA, Astorino TA, Mermier CM. Does heat acclimation improve exercise capacity at altitude? A cross-tolerance model. Int J Sports Med. 2014;35(12):975981. doi:10.1055/s-0034-1368724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Sotiridis A, Debevec T, McDonnell AC, Ciuha U, Eiken O, Mekjavic IB. Exercise cardiorespiratory and thermoregulatory responses in normoxic, hypoxic and hot environment following 10-day continuous hypoxic exposure. J Appl Physiol. 2018;125(4):12841295. doi:10.1152/japplphysiol.01114.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Corbett J, Rendell RA, Massey HC, Costello JT, Tipton MJ. Inter-individual variation in the adaptive response to heat acclimation. J Therm Biol. 2018;74:2936. doi:10.1016/j.jtherbio.2018.03.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2818 760 52
Full Text Views 139 50 13
PDF Downloads 179 36 5